

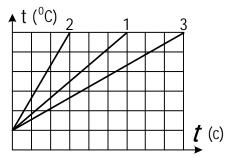
ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО ФИЗИКЕ. 2019–2020 уч. г. МУНИЦИПАЛЬНЫЙ ЭТАП. 9 КЛАСС

Тестовые задания

1. На рисунке схематично изображены графики зависимостей координат для трёх тел, движущихся вдоль оси *OX*, от времени. Какое из тел в процессе движения: а) — останавливалось; б) — меняло направление движения?

A)
$$a - 1$$
, $6 - 2$, 3

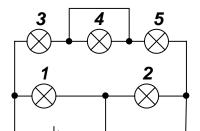
Б)
$$a - 1, 2, 6 - 3$$


B)
$$a - 2, 3, 6 - 3$$

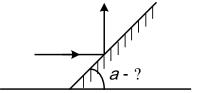
$$\Gamma$$
) a – 3, δ – 3

2. На одной чаше рычажных весов находятся стакан с водой и деревянный шар, уравновешенные стальной гирей, которая стоит на другой чаше. Как изменится равновесие весов, если шар перенести в стакан с водой?

- А) перевесит чаша со стаканом
- Б) перевесит чаша с гирей
- В) равновесие не нарушится
- **3.** Три тела одинаковой массы, изготовленные из разных материалов, греются нагревателями одинаковой мощности. Графики зависимости температуры *t* этих тел от времени t показаны на рисунке. Удельная теплоёмкость первого тела равна *c*. Потери теплоты пренебрежимо малы. Чему равны удельные теплоёмкости второго и третьего тел соответственно?



- A) 2c и 2c/3
- Б) 3с и 0,5с
- В) 0,5с и 1,5с
- Г) 1,5с и 0,5с
- Д) 2с/3 и 2с/3



Всероссийская олимпиада школьников по физике. 2019–2020 уч. г. Муниципальный этап. 9 класс

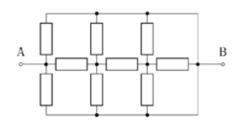
4. На рисунке изображена схема электрической цепи. Какие лампочки в этой цепи не будут гореть?

- А) только 4
- Б) только 2
- В) 1, 3 и 5
- Г) 2 и 4
- Д) ни одна не будет гореть
- **5.** Под каким углом α к горизонту нужно расположить плоское зеркало для того, чтобы горизонтальный пучок света после отражения от этого зеркала стал вертикальным?

- A) 30°
- Б) 45°
- B) 60°
- Γ) 90°
- Д) невозможно определить

Задания с кратким ответом

Задача 1

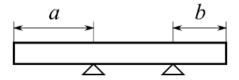

Скорый поезд приближается к станции, двигаясь прямолинейно с неизменной скоростью. Машинист дал свисток продолжительностью 10 с, но стоящий на станции пассажир слышал этот свисток в течение 9 с. Найдите скорость движения поезда, если скорость звука в воздухе 340 м/с, ветра нет. Ответ выразите в м/с и округлите до целого числа.

Задача 2

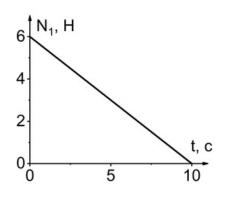
В первом стакане находилась холодная вода, а во втором — вдвое большая масса горячей воды. Когда из первого стакана перелили некоторую массу воды во второй стакан, то установившаяся температура воды в нём оказалась на 1 °С меньше исходной. После этого из второго стакана такую же массу воды вернули обратно в первый стакан. На сколько градусов Цельсия повысилась температура воды в первом стакане после установления теплового равновесия? Теплообменом воды с окружающими телами можно пренебречь. Ответ округлите до целого числа.

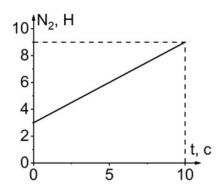
Задача 3

Найдите общее сопротивление участка *АВ* электрической цепи, схема которого изображена на рисунке. Сопротивление каждого резистора равно 1 кОм. Ответ выразите в Ом и округлите до целого числа.


Задача 4

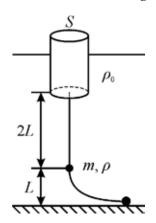
Автомобиль, едущий по шоссе с постоянной скоростью 54 км/ч, проезжает мимо второго автомобиля, стоящего на соседней полосе. В этот момент второй автомобиль трогается с места и начинает догонять первый, двигаясь с постоянным ускорением 5 м/ c^2 . Автомобили можно считать материальными точками.


- 1) За какое время второй автомобиль догонит первый? Ответ выразите в секундах и округлите до целого числа.
- 2) Какую скорость будет иметь второй автомобиль в тот момент, когда он догонит первый автомобиль? Ответ выразите в км/ч и округлите до целого числа.

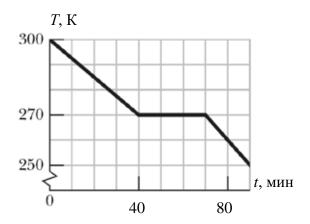


Прямая однородная доска длиной 40 см лежит на двух неподвижных опорах в горизонтальном положении.

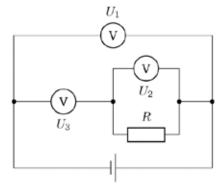
Доску начинают двигать вправо в горизонтальном направлении с постоянной скоростью. На рисунке приведены графики зависимостей величин сил давления доски на опоры от времени t вплоть до момента опрокидывания доски. В момент начала движения a=15 см. Ускорение свободного падения g=10 м/с². Трение отсутствует.



- 1) N_1 это сила давления доски:
 - а) на левую опору;
 - б) на правую опору.
- 2) Чему равна масса доски? Ответ выразите в граммах и округлите до целого числа.
- 3) Найдите расстояние b в момент начала движения доски. Ответ выразите в сантиметрах и округлите до целого числа.
- 4) Найдите модуль скорости, с которой двигают доску. Ответ выразите в см/с и округлите до целого числа.


К цилиндрическому поплавку с площадью сечения S=2 см 2 привязана лёгкая тонкая леска длиной 4L (L=30 см). К середине и к свободному концу лески прикреплены два одинаковых свинцовых грузила массой m=10 г каждое. Изначально нижнее грузило лежит на дне, как показано на рисунке, а поплавок плавает вертикально. Плотность воды $r_0=1000$ кг/м 3 , плотность свинца r=11300 кг/м 3 . Ускорение свободного падения g=10 м/с 2 .

- 1) Считая, что поплавок может удержать на плаву два грузила, найдите, при каком минимальном изменении уровня воды в водоёме нижнее грузило оторвётся от дна. Ответ выразите в сантиметрах и округлите до десятых долей.
- 2) Найдите силу натяжения верхней части лески (между поплавком и верхним грузилом) после отрыва нижнего грузила от дна. Ответ выразите в ньютонах и округлите до десятых долей.

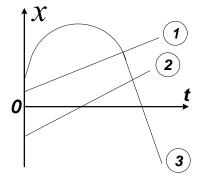

Образец вещества в жидком состоянии помещают в охлаждающее устройство, которое отводит от образца теплоту. На рисунке приведена зависимость температуры T этого образца (температура выражена в Кельвинах) от времени t. Удельная теплоёмкость вещества образца в жидком состоянии составляет 3000 Дж/(кг \times C). Один градус Цельсия равен одному Кельвину.

- 1) Найдите удельную теплоту плавления образца. Ответ выразите в кДж/кг и округлите до десятых долей.
- 2) Найдите удельную теплоёмкость образца в твёрдом состоянии. Ответ выразите в Дж/(кг%С), и округлите до целого числа.

Задача 8

Электрическая цепь, схема которой изображена на рисунке, состоит из резистора с сопротивлением R, трёх одинаковых вольтметров с сопротивлениями 10R каждый и идеальной батарейки с напряжением 3,6 В.

- 1) Найдите напряжение U_1 . Ответ выразите в вольтах, округлите до десятых долей.
- 2) Найдите напряжение U_2 . Ответ выразите в вольтах, округлите до десятых долей.
- 3) Найдите напряжение U_3 . Ответ выразите в вольтах, округлите до десятых долей.



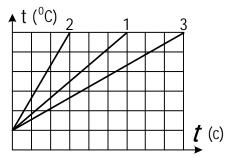
ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО ФИЗИКЕ. 2019–2020 уч. г. МУНИЦИПАЛЬНЫЙ ЭТАП. 9 КЛАСС

Тестовые задания

1. На рисунке схематично изображены графики зависимостей координат для трёх тел, движущихся вдоль оси *OX*, от времени. Какое из тел в процессе движения: а) — останавливалось; б) — меняло направление движения? (**1 балл**)

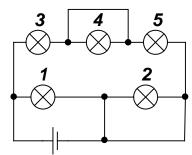
A)
$$a - 1$$
, $6 - 2$, 3

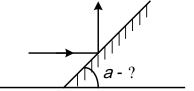
Б)
$$a - 1, 2, 6 - 3$$


B)
$$a - 2, 3, 6 - 3$$

$$\Gamma$$
) a – 3, δ – 3

2. На одной чаше рычажных весов находятся стакан с водой и деревянный шар, уравновешенные стальной гирей, которая стоит на другой чаше. Как изменится равновесие весов, если шар перенести в стакан с водой? (**1 балл**)


- А) перевесит чаша со стаканом
- Б) перевесит чаша с гирей
- В) равновесие не нарушится
- **3.** Три тела одинаковой массы, изготовленные из разных материалов, греются нагревателями одинаковой мощности. Графики зависимости температуры *t* этих тел от времени t показаны на рисунке. Удельная теплоёмкость первого тела равна *c*. Потери теплоты пренебрежимо малы. Чему равны удельные теплоёмкости второго и третьего тел соответственно? (**3 балла**)


- A) 2c и 2c/3
- Б) 3с и 0,5с
- В) 0,5с и 1,5с
- Γ) 1,5c и 0,5c
- Д) 2с/3 и 2с/3

Всероссийская олимпиада школьников по физике. 2019–2020 уч. г. Муниципальный этап. 9 класс

4. На рисунке изображена схема электрической цепи. Какие лампочки в этой цепи не будут гореть? (**2 балла**)

- А) только 4
- Б) только 2
- В) 1, 3 и 5
- Г) 2 и 4
- Д) ни одна не будет гореть
- **5.** Под каким углом α к горизонту нужно расположить плоское зеркало для того, чтобы горизонтальный пучок света после отражения от этого зеркала стал вертикальным? (**1 балл**)

- $A) 30^{\circ}$
- Б) 45°
- B) 60°
- Γ) 90°
- Д) невозможно определить

Ответы:

1	2	3	4	5
Γ	В	В	Γ	Б

Максимум за тестовые задания 8 баллов.

Задания с кратким ответом

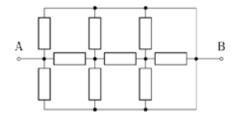
Задача 1

Скорый поезд приближается к станции, двигаясь прямолинейно с неизменной скоростью. Машинист дал свисток продолжительностью 10 с, но стоящий на станции пассажир слышал этот свисток в течение 9 с. Найдите скорость движения поезда, если скорость звука в воздухе 340 м/с, ветра нет. Ответ выразите в м/с и округлите до целого числа.

Ответ: 34

Максимум за задачу 7 баллов.

Задача 2


В первом стакане находилась холодная вода, а во втором — вдвое большая масса горячей воды. Когда из первого стакана перелили некоторую массу воды во второй стакан, то установившаяся температура воды в нём оказалась на 1 °С меньше исходной. После этого из второго стакана такую же массу воды вернули обратно в первый стакан. На сколько градусов Цельсия повысилась температура воды в первом стакане после установления теплового равновесия? Теплообменом воды с окружающими телами можно пренебречь. Ответ округлите до целого числа.

Ответ: 2

Максимум за задачу 7 баллов.

Задача 3

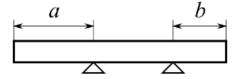
Найдите общее сопротивление участка AB электрической цепи, схема которого изображена на рисунке. Сопротивление каждого резистора равно 1 кОм. Ответ выразите в Ом и округлите до целого числа.

Ответ: 366

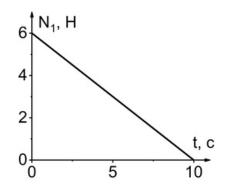
Максимум за задачу 7 баллов.

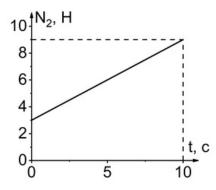
Автомобиль, едущий по шоссе с постоянной скоростью 54 км/ч, проезжает мимо второго автомобиля, стоящего на соседней полосе. В этот момент второй автомобиль трогается с места и начинает догонять первый, двигаясь с постоянным ускорением 5 м/ c^2 . Автомобили можно считать материальными точками.

- 1) За какое время второй автомобиль догонит первый? Ответ выразите в секундах и округлите до целого числа. (6 баллов)
- 2) Какую скорость будет иметь второй автомобиль в тот момент, когда он догонит первый автомобиль? Ответ выразите в км/ч и округлите до целого числа. (**4 балла**)


Ответ:

1)	2)
6	108

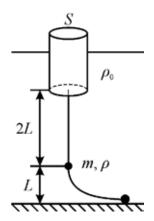

Максимум за задачу 10 баллов.


Задача 5

Прямая однородная доска длиной 40 см лежит на двух неподвижных опорах в горизонтальном положении.

Доску начинают двигать вправо в горизонтальном направлении с постоянной скоростью. На рисунке приведены графики зависимостей величин сил давления доски на опоры от времени t вплоть до момента опрокидывания доски. В момент начала движения a=15 см. Ускорение свободного падения g=10 м/с². Трение отсутствует.

Всероссийская олимпиада школьников по физике. 2019–2020 уч. г. Муниципальный этап. 9 класс


- 1) N_1 это сила давления доски:
 - а) на левую опору;
 - б) на правую опору.
 - (2 балла)
- 2) Чему равна масса доски? Ответ выразите в граммах и округлите до целого числа. (2 балла)
- 3) Найдите расстояние b в момент начала движения доски. Ответ выразите в сантиметрах и округлите до целого числа. (4 балла)
- 4) Найдите модуль скорости, с которой двигают доску. Ответ выразите в см/с и округлите до целого числа. (2 балла)

Ответ:	1)	2)	3)	4)
	a	900	10	1

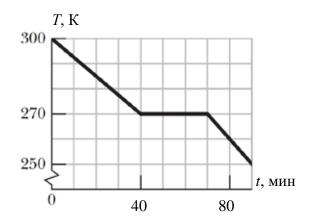
Максимум за задачу 10 баллов.

Задача 6

К цилиндрическому поплавку с площадью сечения $S=2~{\rm cm}^2$ привязана лёгкая тонкая леска длиной $4L~(L=30~{\rm cm})$. К середине и к свободному концу лески прикреплены два одинаковых свинцовых грузила массой $m=10~{\rm r}$ каждое. Изначально нижнее грузило лежит на дне, как показано на рисунке, а поплавок плавает вертикально. Плотность воды $r_0=1000~{\rm kr/m}^3$, плотность свинца $r=11300~{\rm kr/m}^3$. Ускорение свободного падения $g=10~{\rm m/c}^2$.

- 1) Считая, что поплавок может удержать на плаву два грузила, найдите, при каком минимальном изменении уровня воды в водоёме нижнее грузило оторвётся от дна. Ответ выразите в сантиметрах и округлите до десятых долей. (5 баллов)
- 2) Найдите силу натяжения верхней части лески (между поплавком и верхним грузилом) после отрыва нижнего грузила от дна. Ответ выразите в ньютонах и округлите до десятых долей. (5 баллов)

Всероссийская олимпиада школьников по физике. 2019–2020 уч. г. Муниципальный этап. 9 класс

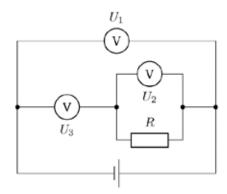

Ответ:

1)	2)
34,6	0,18

Максимум за задачу 10 баллов.

Задача 7

Образец вещества в жидком состоянии помещают в охлаждающее устройство, которое отводит от образца теплоту. На рисунке приведена зависимость температуры T этого образца (температура выражена в Кельвинах) от времени t. Удельная теплоёмкость вещества образца в жидком состоянии составляет 3000 Дж/(кг \times C). Один градус Цельсия равен одному Кельвину.


- 1) Найдите удельную теплоту плавления образца. Ответ выразите в кДж/кг и округлите до десятых долей. (**5 баллов**)
- 2) Найдите удельную теплоёмкость образца в твёрдом состоянии. Ответ выразите в Дж/(кг%С), и округлите до целого числа. (**5 баллов**)

Ответ:

1)	2)
67,5	2250

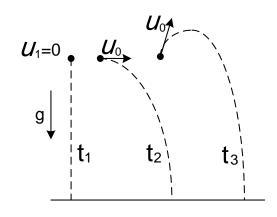
Максимум за задачу 10 баллов.

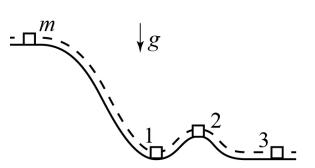
Электрическая цепь, схема которой изображена на рисунке, состоит из резистора с сопротивлением R, трёх одинаковых вольтметров с сопротивлениями 10R каждый и идеальной батарейки с напряжением $3.6 \, \mathrm{B}$.

- 1) Найдите напряжение U_1 . Ответ выразите в вольтах, округлите до десятых долей. (2 балла)
- 2) Найдите напряжение U_2 . Ответ выразите в вольтах, округлите до десятых долей. (4 балла)
- 3) Найдите напряжение U_3 . Ответ выразите в вольтах, округлите до десятых долей. (4 балла)

Ответ:	1)	2)	3)
	3,6	0,3	3,3

Максимум за задачу 10 баллов.

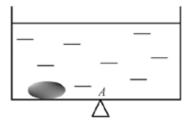

Всего за работу 79 баллов.


ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО ФИЗИКЕ. 2019–2020 уч. г. МУНИЦИПАЛЬНЫЙ ЭТАП. 10 КЛАСС

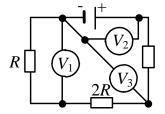
Тестовые задания

1. B Земли вблизи поле тяготения её поверхности с одинаковой высоты бросают три тела. Первое тело отпускают без начальной скорости. Начальная второго тела скорость равна и направлена горизонтально, начальная скорость третьего тела также равна V_0 , но направлена под углом к горизонту вверх (см. рисунок). Сравните времена полёта тел. Сопротивлением воздуха можно пренебречь.

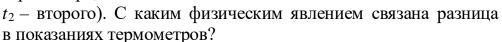
- A) $t_1 < t_2 < t_3$
- Б) $t_1 > t_2 > t_3$
- B) $t_1 = t_2 = t_3$
- Γ) $t_1 = t_2 < t_3$
- 2. Небольшое тело массой *т* съезжает по изображённой на рисунке гладкой поверхности, не отрываясь от неё. В каком положении сила реакции, действующая на тело со стороны поверхности, максимальна, а в какой минимальна?

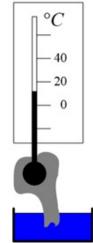


- А) в положении 1 максимальна, а в положении 2 минимальна
- Б) в положении 2 максимальна, а в положении 3 минимальна
- В) в положении 3 максимальна, а в положении 2 минимальна
- Г) в положении 1 максимальна, а в положении 3 минимальна
- Д) одинакова во всех случаях



Всероссийская олимпиада школьников по физике. 2019–2020 уч. г. Муниципальный этап. 10 класс

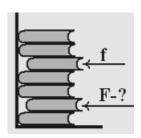

3. Ко дну левой части сосуда, частично заполненного водой, приморожен кусок льда. Сосуд уравновешен на опоре *A*. Что произойдёт с сосудом, когда лёд растает? Сосуд имеет прямоугольное сечение.



- А) сохранится равновесие сосуда
- Б) сосуд будет опрокидываться, вращаясь по часовой стрелке
- В) сосуд будет опрокидываться, вращаясь против часовой стрелки
- Г) ответ зависит от формы куска льда
- **4.** На рисунке изображена схема электрической цепи. Все вольтметры в этой цепи идеальные. Какой вольтметр показывает наибольшее напряжение?

- A) 1
- Б) 2
- B) 3
- Г) все показания одинаковы
- **5.** Висящий на стене комнатный термометр показывает температуру $t_1 = 20$ °C. Колбочка второго такого же термометра обёрнута тканью, край которой опущен в стакан с водой, стоящий на столе в той же комнате (см. рисунок). Сравните показания термометров (t_1 показание первого термометра,

- A) $t_1 > t_2$, с явлением теплопроводности
- Б) $t_1 > t_2$, с явлением конденсации
- B) $t_1 < t_2$, с явлением конденсации
- Γ) $t_1 > t_2$, с явлением испарения
- Д) $t_1 < t_2$, с явлением испарения


Задания с кратким ответом

Задача 1

В цилиндрический сосуд налит раствор поваренной соли, плотность которого 1,175 г/см³. В растворе плавает кусок льда. После того, как лёд полностью растаял, плотность раствора стала равна 1,095 г/см³. Найдите изменение высоты уровня раствора, если исходно этот уровень находился на высоте 11 см от дна сосуда. Ответ выразите в сантиметрах и округлите до десятых долей.

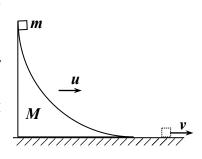
Задача 2

На горизонтальной полке лежит стопка из семи одинаковых книг. Третья сверху и вторая снизу немного выдвинуты из стопки, остальные книги прижаты корешками к вертикальной стенке. Наименьшая горизонтальная сила, необходимая для того, чтобы придвинуть к стенке третью сверху книгу, равна $f = 25 \; \mathrm{H}$. Какую наименьшую силу F нужно приложить для того, чтобы придвинуть к стенке

вторую снизу книгу? Ответ выразите в ньютонах и округлите до целого числа.

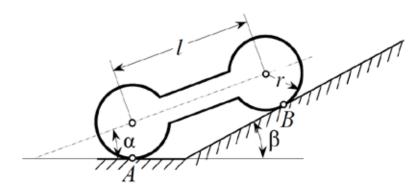
Задача 3

У пустого кувшина, сделанного из некоторого металла, теплоёмкость равна 200 Дж/°С. В этот кувшин налили 200 г воды, удельная теплоёмкость которой равна 4200 Дж/(кг×С). Во сколько раз теплоёмкость кувшина с водой больше теплоёмкости пустого кувшина? Ответ округлите до десятых долей.


Задача 4

В электрический самовар мощностью 600 Вт и в электрический чайник мощностью 300 Вт налили воду. Если одновременно включить оба прибора в сеть с напряжением 220 В, на которое они рассчитаны, то вода в них закипит одновременно, через 4 минуты после включения. Эти самовар и чайник соединили последовательно и включили в ту же сеть. Сопротивления у нагревательных элементов самовара и чайника постоянные, теплообменом с окружающей средой можно пренебречь.

- 1) Через сколько времени закипит вода в самоваре? Ответ выразите в минутах и округлите до целого числа.
- 2) Через сколько времени закипит вода в чайнике? Ответ выразите в минутах и округлите до целого числа.


массой Mвместе «Горка» находящимся на её вершине бруском массой m = M/5 двигалась по инерции с неизвестной скоростью и вдоль горизонтальной поверхности. В некоторый момент брусок отпустили, И ОН соскользнул в результате чего «горка» остановилась. Склон «горки» представляет собой четверть окружности радиусом R = 1 м. Ускорение свободного падения g = 10 м/с². Трение отсутствует.

- 1) Найдите конечную скорость v бруска после его соскальзывания с «горки». Ответ выразите в м/с и округлите до десятых долей.
- 2) Найдите начальную скорость u горки с бруском. Ответ выразите в м/с и округлите до десятых долей.

Задача 6

Однородная симметричная гантель состоит из двух одинаковых шаров, соединенных цилиндрическим стержнем. Размеры гантели указаны на рисунке. Гантель лежит на горизонтальной и наклонной плоскостях, касаясь их в точках A и B. Эти плоскости образуют двугранный угол $p-b=150^\circ$ (линия пересечения плоскостей перпендикулярна плоскости рисунка). Ось симметрии гантели лежит в плоскости рисунка. Трение в точке A отсутствует.

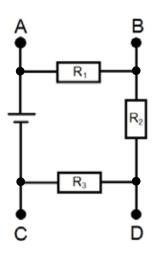
- 1) Найдите минимальный коэффициент трения между наклонной плоскостью и гантелью в точке B, при котором равновесие возможно. Ответ округлите до десятых долей.
- 2) Пусть $a = 12^{\circ}$, масса гантели равна m и l = 5r. Найдите отношение mg/N, где N модуль силы нормальной реакции, действующей на гантель в точке A. Ответ округлите до сотых долей.

Всероссийская олимпиада школьников по физике. 2019–2020 уч. г. Муниципальный этап. 10 класс

Задача 7

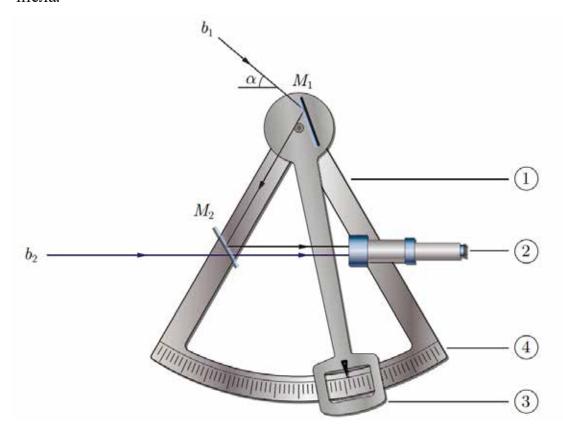
В один жаркий день отличница Маша, желая остудить воздух в комнате к приходу бабушки, перед выходом из дома включила кондиционер. В тот же момент в комнату забежал двоечник Вовочка, который, желая охладить комнату еще быстрее, одновременно с кондиционером включил ещё и напольный вентилятор и сразу убежал играть во двор. Известно, что за 1 час при выключенных приборах температура комнаты увеличивается на 4 °C. Считайте, что комната пустая, мощность теплового потока к комнате через стены, окна и т.д. не изменяется, комната имеет размеры $5 \text{ м} \times 8 \text{ м} \times 2,5 \text{ м}$, она закрыта и не проветривается, теплоёмкостью кондиционера и вентилятора можно пренебречь. КПД вентилятора равен 75%, а полезная мощность, развиваемая его лопастями, равна 58,5 Bt. Холодильный коэффициент кондиционера равен 2, потребляемая им мощность 90 Bt. Удельная теплоёмкость воздуха равна $1,3 \text{ кг/м}^3$.

Справка: холодильный коэффициент $k = Q_{omh}/A_{3amp}$ равен отношению количества теплоты Q_{omh} , отнимаемой кондиционером от воздуха (за единицу времени), к работе A_{3amp} , которую нужно затратить для этого (за единицу времени).


- 1) На сколько изменится температура воздуха в комнате за 1 час непрерывной работы обоих приборов? Ответ выразите в градусах Цельсия (с учётом знака) и округлите до десятых долей.
- 2) На сколько изменилась бы температура воздуха в комнате за 1 час непрерывной работы кондиционера, если бы вентилятор был выключен? Ответ выразите в градусах Цельсия (с учётом знака) и округлите до десятых долей.

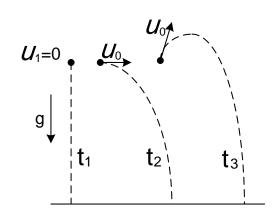
Всероссийская олимпиада школьников по физике. 2019–2020 уч. г. Муниципальный этап. 10 класс

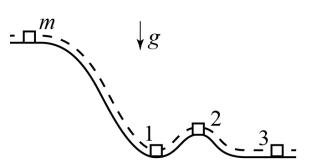
Задача 8


Школьник нашёл резисторы с неизвестными номиналами и батарейку с неизвестным напряжением на её выводах. Чтобы изучить найденные предметы, он собрал цепь, схема которой изображена на рисунке. У школьника также был амперметр и вольтметр. Сначала он подключил амперметр к клеммам A и B и вольтметр к клеммам C и D. Приборы показали A и B вольтметр к клеммам A и A

- 1) Чему равно сопротивление R_1 ? Ответ выразите в омах и округлите до целого числа.
- 2) Чему равно сопротивление R_2 ? Ответ выразите в омах и округлите до целого числа.
- 3) Найдите сопротивление R_3 . Ответ выразите в омах и округлите до целого числа.
- 4) Что покажет вольтметр, если школьник подключит только его к клеммам A и B? Ответ выразите в вольтах и округлите до целого числа.
- 5) Что покажет амперметр, если школьник подключит только его к клеммам C и D? Ответ выразите в амперах и округлите до целого числа.

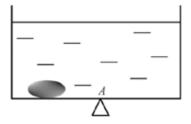
На рисунке представлено схематичное изображение секстанта — прибора для определения угловой высоты а Солнца над горизонтом. На раме 1 закреплено полупрозрачное зеркало M_2 , а на вращающейся части 3 (алидаде) — основное зеркало M_1 . Луч света b_1 , например, от Солнца, отражаясь от зеркал M_1 и M_2 , наблюдается через зрительную трубу 2. При этом положение алидады подбирается таким образом, чтобы изображение Солнца в зрительной трубе совпадало с изображением линии горизонта, формируемым лучами b_2 , проходящими через полупрозрачное зеркало M_2 без отклонения. Угол поворота алидады измеряется с помощью транспортира 4. Если расстояние между соседними делениями на шкале транспортира соответствует 1° , то скольким делениям соответствует изменение угла а на 10° ? Ответ округлите до целого числа.



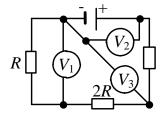

ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО ФИЗИКЕ. 2019–2020 уч. г. МУНИЦИПАЛЬНЫЙ ЭТАП. 10 КЛАСС

Тестовые задания

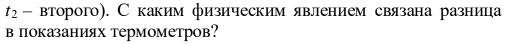
1. B Земли вблизи поле тяготения её поверхности с одинаковой высоты бросают три тела. Первое тело отпускают без начальной скорости. Начальная второго тела скорость равна и направлена горизонтально, начальная скорость третьего тела также равна V_0 , но направлена под углом к горизонту вверх (см. рисунок). Сравните времена полёта тел. Сопротивлением воздуха можно пренебречь.

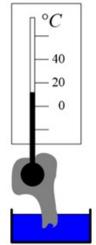


- A) $t_1 < t_2 < t_3$
- Б) $t_1 > t_2 > t_3$
- B) $t_1 = t_2 = t_3$
- Γ) $t_1 = t_2 < t_3$
- 2. Небольшое тело массой *т* съезжает по изображённой на рисунке гладкой поверхности, не отрываясь от неё. В каком положении сила реакции, действующая на тело со стороны поверхности, максимальна, а в какой минимальна?



- А) в положении 1 максимальна, а в положении 2 минимальна
- Б) в положении 2 максимальна, а в положении 3 минимальна
- В) в положении 3 максимальна, а в положении 2 минимальна
- Г) в положении 1 максимальна, а в положении 3 минимальна
- Д) одинакова во всех случаях


3. Ко дну левой части сосуда, частично заполненного водой, приморожен кусок льда. Сосуд уравновешен на опоре *A*. Что произойдёт с сосудом, когда лёд растает? Сосуд имеет прямоугольное сечение.



- А) сохранится равновесие сосуда
- Б) сосуд будет опрокидываться, вращаясь по часовой стрелке
- В) сосуд будет опрокидываться, вращаясь против часовой стрелки
- Г) ответ зависит от формы куска льда
- **4.** На рисунке изображена схема электрической цепи. Все вольтметры в этой цепи идеальные. Какой вольтметр показывает наибольшее напряжение?

- A) 1
- Б) 2
- B) 3
- Г) все показания одинаковы
- **5.** Висящий на стене комнатный термометр показывает температуру $t_1 = 20$ °C. Колбочка второго такого же термометра обёрнута тканью, край которой опущен в стакан с водой, стоящий на столе в той же комнате (см. рисунок). Сравните показания термометров (t_1 показание первого термометра,

- A) $t_1 > t_2$, с явлением теплопроводности
- Б) $t_1 > t_2$, с явлением конденсации
- В) $t_1 < t_2$, с явлением конденсации
- Γ) $t_1 > t_2$, с явлением испарения
- Д) $t_1 < t_2$, с явлением испарения

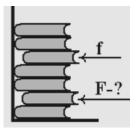
Ответы:

1	2	3	4	5
Γ	A	В	Б	Γ

По 2 балла за каждый правильный ответ. Максимум 10 баллов.

Задания с кратким ответом

Задача 1


В цилиндрический сосуд налит раствор поваренной соли, плотность которого 1,175 г/см³. В растворе плавает кусок льда. После того, как лёд полностью растаял, плотность раствора стала равна 1,095 г/см³. Найдите изменение высоты уровня раствора, если исходно этот уровень находился на высоте 11 см от дна сосуда. Ответ выразите в сантиметрах и округлите до десятых долей.

Ответ: 0,8

Максимум за задачу 6 баллов.

Задача 2

На горизонтальной полке лежит стопка из семи одинаковых книг. Третья сверху и вторая снизу немного выдвинуты из стопки, остальные книги прижаты корешками к вертикальной стенке. Наименьшая горизонтальная сила, необходимая для того, чтобы придвинуть к стенке третью сверху книгу, равна $f=25~\mathrm{H}$. Какую наименьшую силу F нужно приложить для того, чтобы придвинуть к стенке

вторую снизу книгу? Ответ выразите в ньютонах и округлите до целого числа.

Ответ: 55

Максимум за задачу 5 баллов.

Задача 3

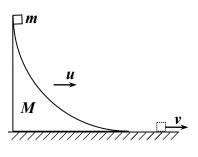
У пустого кувшина, сделанного из некоторого металла, теплоёмкость равна 200 Дж/°С. В этот кувшин налили 200 г воды, удельная теплоёмкость которой равна 4200 Дж/(кг%С). Во сколько раз теплоёмкость кувшина с водой больше теплоёмкости пустого кувшина? Ответ округлите до десятых долей.

Ответ: 5,2

Максимум за задачу 5 баллов.

В электрический самовар мощностью 600 Вт и в электрический чайник мощностью 300 Вт налили воду. Если одновременно включить оба прибора в сеть с напряжением 220 В, на которое они рассчитаны, то вода в них закипит одновременно, через 4 минуты после включения. Эти самовар и чайник соединили последовательно и включили в ту же сеть. Сопротивления у нагревательных элементов самовара и чайника постоянные, теплообменом с окружающей средой можно пренебречь.

- 1) Через сколько времени закипит вода в самоваре? Ответ выразите в минутах и округлите до целого числа. (4 балла)
- 2) Через сколько времени закипит вода в чайнике? Ответ выразите в минутах и округлите до целого числа. (**4 балла**)

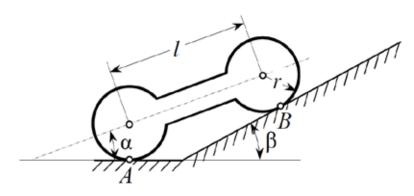

Ответ:

1)	2)
36	9

Максимум за задачу 8 баллов.

Задача 5

«Горка» массой M вместе с находящимся на её вершине бруском массой m=M/5 двигалась по инерции с неизвестной скоростью u вдоль горизонтальной поверхности. В некоторый момент брусок отпустили, и он соскользнул вниз, в результате чего «горка» остановилась. Склон «горки» представляет собой четверть окружности радиусом R=1 м. Ускорение свободного падения g=10 м/с². Трение отсутствует.


- 1) Найдите конечную скорость v бруска после его соскальзывания с «горки». Ответ выразите в м/с и округлите до десятых долей. (7 баллов)
- 2) Найдите начальную скорость u горки с бруском. Ответ выразите в м/с и округлите до десятых долей. (**3 балла**)

Ответ:

1)	2)
4,9	0,8

Максимум за задачу 10 баллов.

Однородная симметричная гантель состоит из двух одинаковых шаров, соединенных цилиндрическим стержнем. Размеры гантели указаны на рисунке. Гантель лежит на горизонтальной и наклонной плоскостях, касаясь их в точках A и B. Эти плоскости образуют двугранный угол $p-b=150^\circ$ (линия пересечения плоскостей перпендикулярна плоскости рисунка). Ось симметрии гантели лежит в плоскости рисунка. Трение в точке A отсутствует.

- 1) Найдите минимальный коэффициент трения между наклонной плоскостью и гантелью в точке B, при котором равновесие возможно. Ответ округлите до десятых долей. (6 баллов)
- 2) Пусть $a = 12^{\circ}$, масса гантели равна m и l = 5r. Найдите отношение mg/N, где N модуль силы нормальной реакции, действующей на гантель в точке A. Ответ округлите до сотых долей. (6 баллов)

Ответ:

1)	2)
0,6	ворота 1,81 – 1,85

Максимум за задачу 12 баллов.

Задача 7

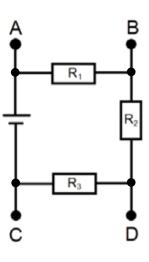
В один жаркий день отличница Маша, желая остудить воздух в комнате к приходу бабушки, перед выходом из дома включила кондиционер. В тот же момент в комнату забежал двоечник Вовочка, который, желая охладить комнату еще быстрее, одновременно с кондиционером включил ещё и напольный вентилятор и сразу убежал играть во двор. Известно, что за 1 час при выключенных приборах температура комнаты увеличивается на 4 °С. Считайте, что комната пустая, мощность теплового потока к комнате через стены, окна и т.д. не изменяется, комната имеет размеры $5 \text{ м} \times 8 \text{ м} \times 2,5 \text{ м}$, она закрыта и не проветривается, теплоёмкостью кондиционера и вентилятора можно пренебречь. КПД вентилятора равен 75%, а полезная мощность, развиваемая его лопастями, равна 58,5 Bt. Холодильный коэффициент

Всероссийская олимпиада школьников по физике. 2019–2020 уч. г. Муниципальный этап. 10 класс

кондиционера равен 2, потребляемая им мощность 90 Вт. Удельная теплоёмкость воздуха равна 1 кДж/(кг%С), плотность воздуха равна 1,3 кг/м³.

Справка: холодильный коэффициент $k = Q_{omn}/A_{3amp}$ равен отношению количества теплоты Q_{omn} , отнимаемой кондиционером от воздуха (за единицу времени), к работе A_{3amp} , которую нужно затратить для этого (за единицу времени).

- 1) На сколько изменится температура воздуха в комнате за 1 час непрерывной работы обоих приборов? Ответ выразите в градусах Цельсия (с учётом знака) и округлите до десятых долей. (6 баллов)
- 2) На сколько изменилась бы температура воздуха в комнате за 1 час непрерывной работы кондиционера, если бы вентилятор был выключен? Ответ выразите в градусах Цельсия (с учётом знака) и округлите до десятых долей. (2 балла)

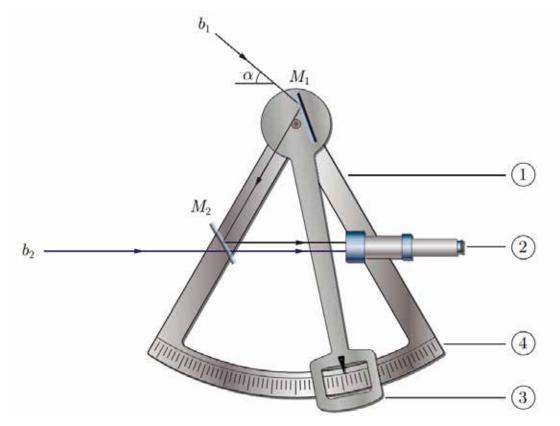

Ответ:

1)	2)
1,2	-1,0

Максимум за задачу 8 баллов.

Задача 8

Школьник нашёл резисторы с неизвестными номиналами и батарейку с неизвестным напряжением на её выводах. Чтобы изучить найденные предметы, он собрал цепь, схема которой изображена на рисунке. У школьника также был амперметр и вольтметр. Сначала он подключил амперметр к клеммам A и B и вольтметр к клеммам C и D. Приборы показали A и B в Затем школьник подключил вольтметр к клеммам A и B, а амперметр к клеммам A и B. В этот раз показания приборов были A в


- 1) Чему равно сопротивление R_1 ? Ответ выразите в омах и округлите до целого числа. (2 балла)
- 2) Чему равно сопротивление R_2 ? Ответ выразите в омах и округлите до целого числа. (4 балла)
- 3) Найдите сопротивление R_3 . Ответ выразите в омах и округлите до целого числа. (2 балла)
- 4) Что покажет вольтметр, если школьник подключит только его к клеммам A и B? Ответ выразите в вольтах и округлите до целого числа. (3 балла)
- 5) Что покажет амперметр, если школьник подключит только его к клеммам C и D? Ответ выразите в амперах и округлите до целого числа. (2 балла)

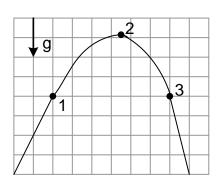
Ответ:	1)	2)	3)	4)	5)
	3	1	2	6	3

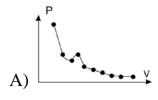
Максимум за задачу 13 баллов.

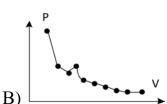
Задача 9

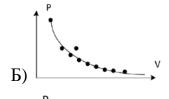
На рисунке представлено схематичное изображение секстанта — прибора для определения угловой высоты а Солнца над горизонтом. На раме 1 закреплено полупрозрачное зеркало M_2 , а на вращающейся части 3 (алидаде) — основное зеркало M_1 . Луч света b_1 , например, от Солнца, отражаясь от зеркал M_1 и M_2 , наблюдается через зрительную трубу 2. При этом положение алидады подбирается таким образом, чтобы изображение Солнца в зрительной трубе совпадало с изображением линии горизонта, формируемым лучами b_2 , проходящими через полупрозрачное зеркало M_2 без отклонения. Угол поворота алидады измеряется с помощью транспортира 4. Если расстояние между соседними делениями на шкале транспортира соответствует 1° , то скольким делениям соответствует изменение угла а на 10° ? Ответ округлите до целого числа.

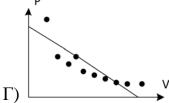
Ответ: 5. *Максимум за задачу 7 баллов*.


Всего за работу 84 балла.

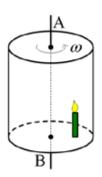

ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО ФИЗИКЕ. 2019–2020 уч. г. МУНИЦИПАЛЬНЫЙ ЭТАП. 11 КЛАСС

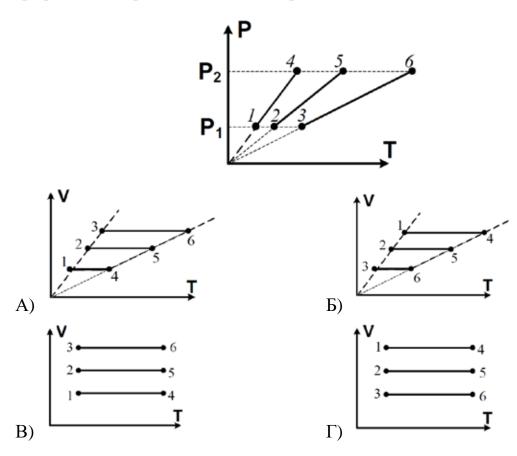

Тестовые задания


1. На рисунке показана траектория движения тела, брошенного под углом к горизонту. Будем считать, что на летящее тело действует постоянная по модулю сила сопротивления воздуха. Сравните модули ускорений тела в точках 1, 2 и 3.

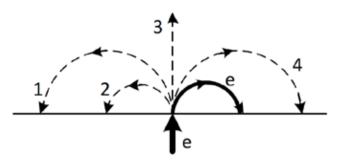


- A) $a_1 > a_2 > a_3$
- Б) $a_1 < a_2 < a_3$
- B) $a_1 < a_3 < a_2$
- Γ) $a_1 > a_3 > a_2$
- Д) $a_1 = a_2 = a_3$
- **2.** В экспериментальной работе школьник исследовал зависимость давления газа от его объёма. Какой из графиков, построенных по экспериментальным точкам, учитель должен будет признать наиболее правильным?





3. В закрытом цилиндрическом сосуде, который долгое время вращается вокруг вертикальной оси *AB*, зажгли свечу. В верхней и в нижней крышках цилиндра есть небольшие отверстия, благодаря которым свеча не гаснет. В каком направлении отклонится пламя свечи?



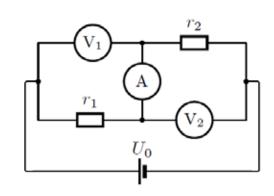
- А) в сторону оси
- Б) от оси
- В) вперед, по направлению движения
- Г) назад, против направления движения
- Д) никуда не отклонится
- **4.** С одним и тем же идеальным газом, масса которого не меняется, совершили три изохорных процесса, изображённых на диаграмме PT. Как выглядят графики этих процессов на VT диаграмме?

5. В однородное магнитное поле влетает электрон *е* и движется по дуге окружности. Траектория электрона показана жирной линией. По какой из траекторий будет двигаться протон, влетевший в это поле с таким же импульсом?

- A) 1
- Б) 2
- B) 3
- Γ) 4

Задания с кратким ответом

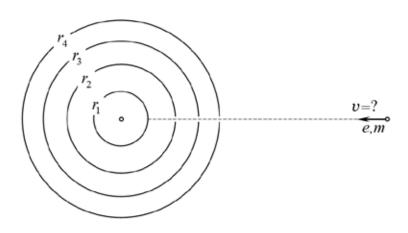
Задача 1


Колесо радиусом 15 см двигалось вдоль ровной дороги равномерно, но с проскальзыванием. Угловая скорость колеса не изменялась. Ось колеса переместилась на расстояние 2 м, при этом колесо совершило 5 полных оборотов. Пусть V_1 и V_2 — модули скорости верхней и нижней точек колеса соответственно, причём $V_1 > V_2$. Найдите отношение V_1/V_2 . Ответ округлите до десятых долей.

Задача 2

На поверхности воды, температура которой равна 0 °С, плавает медный шарик, покрытый толстым слоем льда. Масса шарика с учётом ледяной корки равна 30 г. Этот шарик перемещают в сосуд с водой, объём которой равен 200 мл, а температура 5 °С. Через некоторое время шарик уходит под воду и «зависает» в воде, не опускаясь на дно. Плотность воды 1 г/см³, плотность льда 0,9 г/см³, плотность меди 9,0 г/см³, удельная теплоёмкость воды 4200 Дж/(кг%С), удельная теплоёмкость меди 390 Дж/(кг%С), удельная теплота плавления льда 330 кДж/кг. Теплообменом с окружающей средой можно пренебречь. Чему равна масса шарика, когда он не покрыт льдом? Ответ выразите в граммах и округлите до десятых долей.

Задача 3


В цепи, схема которой показана на рисунке, вольтметры и амперметр можно считать идеальными, сопротивления резисторов равны $r_1=20~\mathrm{Om}$ и $r_2=30~\mathrm{Om}$, напряжение батареи $U_0=6~\mathrm{B}$.

- 1) Найдите показание амперметра. Ответ выразите в миллиамперах (мА) и округлите до целого числа.
- 2) Найдите показание вольтметра V_1 . Ответ выразите в вольтах (В) и округлите до целого числа.
- 3) Найдите показание вольтметра V_2 . Ответ выразите в вольтах (В) и округлите до целого числа.

Четыре концентрические проводящие сферы радиусами $r_1=1$ см, $r_2=2$ см, $r_3=3$ см и $r_4=4$ см имеют относительно бесконечно удалённой точки потенциалы соответственно 0 В, -2 В, -3 В и +5 В. В трёх внешних сферах вдоль одного радиуса просверлены очень маленькие отверстия, не влияющие на электрическое поле системы. Какую наименьшую скорость v, направленную к центру системы, нужно сообщить электрону, покоящемуся «на бесконечности», чтобы он достиг поверхности сферы радиусом r_1 ? Силой тяжести можно пренебречь. Масса электрона $m=9,1\cdot 10^{-31}$ кг, модуль заряда электрона равен $|e|=1,6\cdot 10^{-19}$ Кл. Ответ выразите в км/с и округлите до целого числа.

Задача 5

Футбольный мяч лежит на горизонтальной площадке на расстоянии 60 м от высокой вертикальной стены. Мячу сообщили начальную скорость 15 м/c, направленную под углом 30° к горизонту. Ударяясь о горизонтальную площадку, мяч отскакивает от неё абсолютно упруго. Сопротивлением воздуха можно пренебречь; мяч движется в вертикальной плоскости, перпендикулярной стене. Ускорение свободного падения 10 м/c^2 .

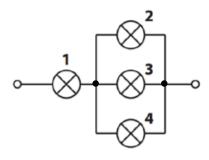
- 1) Сколько раз мяч ударится о горизонтальную площадку до удара о стену?
- 2) На какой высоте над площадкой произойдёт удар мяча о стену? Ответ выразите в сантиметрах и округлите до целого числа.

Всероссийская олимпиада школьников по физике. 2019–2020 уч. г. Муниципальный этап. 11 класс

Задача 6

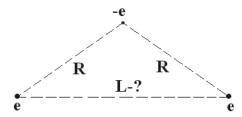
Между двумя телами различной массы, движущимися с одинаковыми по модулю скоростями, происходит абсолютно упругий лобовой удар. После этого соударения изменение механической энергии более тяжёлого тела оказывается максимально возможным.

- 1) Чему равно отношение массы более тяжёлого тела к массе более лёгкого тела? Ответ округлите до целого числа.
- 2) Во сколько раз в результате такого соударения увеличился модуль скорости меньшего по массе тела? Ответ округлите до целого числа.


Задача 7

Оболочка воздушного шара сделана из специальной легко растяжимой ткани и заполнена гелием. Этот воздушный шар на Земле может поднять груз массой до $100 \, \mathrm{kr}$ (масса оболочки воздушного шара включена в массу груза). Этот же шар запускают на Марсе. Объём груза пренебрежимо мал. Плотность воздуха вблизи поверхности Земли равна $1,2 \, \mathrm{kr/m^3}$, атмосферное давление на поверхности Земли $100 \, \mathrm{k\Pi a}$, температура на поверхности Земли $+20 \, ^{\circ}\mathrm{C}$. Плотность атмосферы Марса вблизи его поверхности $0,015 \, \mathrm{kr/m^3}$, давление на поверхности Марса $600 \, \mathrm{\Pi a}$, температура на Марсе равна $213 \, \mathrm{K}$. Молярная масса гелия $4 \, \mathrm{r/моль}$, универсальная газовая постоянная $R = 8,3 \, \mathrm{Дж/(мольж)}$.

- 1) Найдите массу гелия в шаре. Ответ выразите в килограммах и округлите до целого числа.
- 2) Груз какой массы этот же шар смог бы поднять на Марсе? Ответ выразите в килограммах и округлите до целого числа.

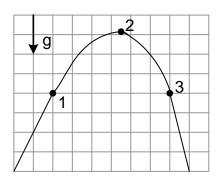

Лампочки cдвумя разными значениями сопротивлений соединены так, как показано Цепь подключили рисунке. К источнику напряжения, и мощность, выделяющаяся в каждой из лампочек, оказалась одинаковой. Зависимостью сопротивления лампочек от силы текущего через них тока можно пренебречь. Затем лампочку номером 4 поменяли местами с лампочкой номер 1.

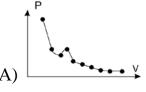
- 1) Увеличилась или уменьшилась суммарная мощность, выделяющаяся в лампах, при подключении к тому же источнику напряжения?
 - а) увеличилась
 - б) уменьшилась
- 2) Найдите отношение P_1/P_2 , где P_1 суммарная мощность, выделяющаяся в цепи изначально, а P_2 суммарная мощность, выделяющаяся в цепи после перемены ламп местами. Ответ округлите до десятых долей.

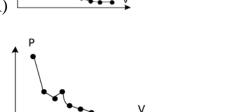
Задача 9

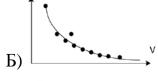
Две частицы с положительным зарядом е и массой M и третья частица с отрицательным зарядом —е и массой m = M/2 вращаются по круговым орбитам, сохраняя конфигурацию равнобедренного треугольника (см. рисунок). При этом плоскости орбит частиц перпендикулярны основанию треугольника.

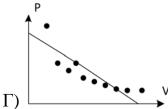
- 1) Найдите отношение R_-/R_+ радиусов орбит, где R_- радиус орбиты отрицательной частицы, R_+ положительной. Ответ округлите до целого числа.
- 2) Найдите отношение длины основания треугольника L к длине его боковой стороны R. Ответ округлите до сотых долей.



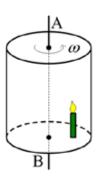

ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО ФИЗИКЕ. 2019–2020 уч. г. МУНИЦИПАЛЬНЫЙ ЭТАП. 11 КЛАСС


Тестовые задания

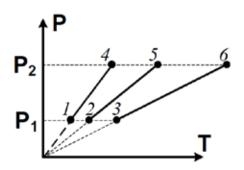

1. На рисунке показана траектория движения тела, брошенного под углом к горизонту. Будем считать, что на летящее тело действует постоянная по модулю сила сопротивления воздуха. Сравните модули ускорений тела в точках 1, 2 и 3.

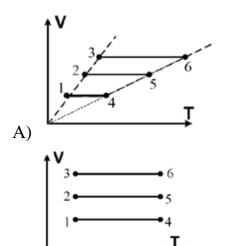


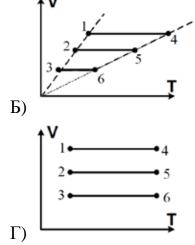
- A) $a_1 > a_2 > a_3$
- Б) $a_1 < a_2 < a_3$
- B) $a_1 < a_3 < a_2$
- Γ) $a_1 > a_3 > a_2$
- Д) $a_1 = a_2 = a_3$
- **2.** В экспериментальной работе школьник исследовал зависимость давления газа от его объёма. Какой из графиков, построенных по экспериментальным точкам, учитель должен будет признать наиболее правильным?



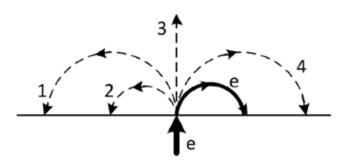
3. В закрытом цилиндрическом сосуде, который долгое время вращается вокруг вертикальной оси *AB*, зажгли свечу. В верхней и в нижней крышках цилиндра есть небольшие отверстия, благодаря которым свеча не гаснет. В каком направлении отклонится пламя свечи?




- А) в сторону оси
- Б) от оси


B)

- В) вперед, по направлению движения
- Γ) назад, против направления движения
- Д) никуда не отклонится


4. С одним и тем же идеальным газом, масса которого не меняется, совершили три изохорных процесса, изображённых на диаграмме PT. Как выглядят графики этих процессов на VT диаграмме?

5. В однородное магнитное поле влетает электрон *е* и движется по дуге окружности. Траектория электрона показана жирной линией. По какой из траекторий будет двигаться протон, влетевший в это поле с таким же импульсом?

A) 1

B)

- Б) 2
- B) 3
- Γ) 4

Ответы:

1	2	3	4	5
A	Б	A	A	Б

По 2 балла за каждый правильный ответ. Максимум 10 баллов.

Задания с кратким ответом

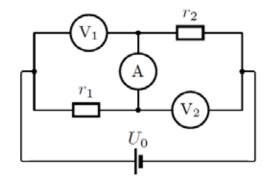
Задача 1

Колесо радиусом 15 см двигалось вдоль ровной дороги равномерно, но с проскальзыванием. Угловая скорость колеса не изменялась. Ось колеса переместилась на расстояние 2 м, при этом колесо совершило 5 полных оборотов. Пусть V_1 и V_2 — модули скорости верхней и нижней точек колеса соответственно, причём $V_1 > V_2$. Найдите отношение V_1/V_2 . Ответ округлите до десятых долей.

Ответ: 2,5

Максимум за задачу 7 баллов.

Задача 2


На поверхности воды, температура которой равна 0 °С, плавает медный шарик, покрытый толстым слоем льда. Масса шарика с учётом ледяной корки равна 30 г. Этот шарик перемещают в сосуд с водой, объём которой равен 200 мл, а температура 5 °С. Через некоторое время шарик уходит под воду и «зависает» в воде, не опускаясь на дно. Плотность воды 1 г/см³, плотность льда 0,9 г/см³, плотность меди 9,0 г/см³, удельная теплоёмкость воды 4200 Дж/(кг×С), удельная теплоёмкость меди 390 Дж/(кг×С), удельная теплота плавления льда 330 кДж/кг. Теплообменом с окружающей средой можно пренебречь. Чему равна масса шарика, когда он не покрыт льдом? Ответ выразите в граммах и округлите до десятых долей.

Ответ: 1,9

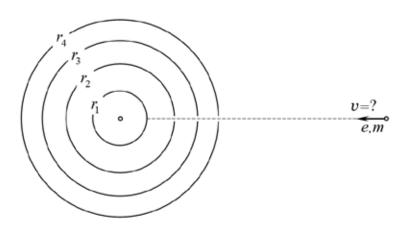
Максимум за задачу 7 баллов.

Задача 3

В цепи, схема которой показана на рисунке, вольтметры и амперметр можно считать идеальными, сопротивления резисторов равны $r_1=20~\mathrm{Om}$ и $r_2=30~\mathrm{Om}$, напряжение батареи $U_0=6~\mathrm{B}$.

Всероссийская олимпиада школьников по физике. 2019–2020 уч. г. Муниципальный этап. 11 класс

- 1) Найдите показание амперметра. Ответ выразите в миллиамперах (мА) и округлите до целого числа. (2 балла)
- 2) Найдите показание вольтметра V_1 . Ответ выразите в вольтах (В) и округлите до целого числа. (2 балла)
- 3) Найдите показание вольтметра V_2 . Ответ выразите в вольтах (В) и округлите до целого числа. (2 балла)


Ответ:

1)	2)	3)
120	2,4	3,6

Максимум за задачу 6 баллов.

Задача 4

Четыре концентрические проводящие сферы радиусами $r_1 = 1$ см, $r_2 = 2$ см, $r_3 = 3$ см и $r_4 = 4$ см имеют относительно бесконечно удалённой точки потенциалы соответственно 0 В, -2 В, -3 В и +5 В. В трёх внешних сферах вдоль одного радиуса просверлены очень маленькие отверстия, не влияющие на электрическое поле системы. Какую наименьшую скорость v, направленную к центру системы, нужно сообщить электрону, покоящемуся «на бесконечности», чтобы он достиг поверхности сферы радиусом r_1 ? Силой тяжести можно пренебречь. Масса электрона $m = 9,1 \cdot 10^{-31}$ кг, модуль заряда электрона равен $|e| = 1,6 \cdot 10^{-19}$ Кл. Ответ выразите в км/с и округлите до целого числа.

Ответ: ворота 1778 - 1780

Максимум за задачу 6 баллов.

Футбольный мяч лежит на горизонтальной площадке на расстоянии 60 м от высокой вертикальной стены. Мячу сообщили начальную скорость 15 м/с, направленную под углом 30° к горизонту. Ударяясь о горизонтальную площадку, мяч отскакивает от неё абсолютно упруго. Сопротивлением воздуха можно пренебречь; мяч движется в вертикальной плоскости, перпендикулярной стене. Ускорение свободного падения 10 м/c^2 .

- 1) Сколько раз мяч ударится о горизонтальную площадку до удара о стену? (**4 балла**)
- 2) На какой высоте над площадкой произойдёт удар мяча о стену? Ответ выразите в сантиметрах и округлите до целого числа. (**6 баллов**)

Ответ:	1)	2)
	3	82

Максимум за задачу 10 баллов.

Задача 6

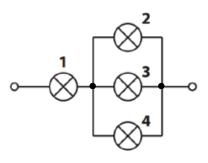
Между двумя телами различной массы, движущимися с одинаковыми по модулю скоростями, происходит абсолютно упругий лобовой удар. После этого соударения изменение механической энергии более тяжёлого тела оказывается максимально возможным.

- 1) Чему равно отношение массы более тяжёлого тела к массе более лёгкого тела? Ответ округлите до целого числа. (**6 баллов**)
- 2) Во сколько раз в результате такого соударения увеличился модуль скорости меньшего по массе тела? Ответ округлите до целого числа. (4 балла)

Ответ:	1)	2)
	3	2

Максимум за задачу 10 баллов.

Оболочка воздушного шара сделана из специальной легко растяжимой ткани и заполнена гелием. Этот воздушный шар на Земле может поднять груз массой до 100 кг (масса оболочки воздушного шара включена в массу груза). Этот же шар запускают на Марсе. Объём груза пренебрежимо мал. Плотность воздуха вблизи поверхности Земли равна 1,2 кг/м³, атмосферное давление на поверхности Земли 100 кПа, температура на поверхности Земли +20 °C. Плотность атмосферы Марса вблизи его поверхности 0,015 кг/м³, давление на поверхности Марса 600 Па, температура на Марсе равна 213 К. гелия 4 г/моль**,** универсальная Молярная масса газовая постоянная R = 8.3 Дж/(мольЖ).

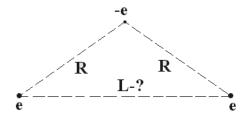

- 1) Найдите массу гелия в шаре. Ответ выразите в килограммах и округлите до целого числа. (3 балла)
- 2) Груз какой массы этот же шар смог бы поднять на Марсе? Ответ выразите в килограммах и округлите до целого числа. (4 балла)

Ответ:	1)	2)
	16	160

Максимум за задачу 7 баллов.

Задача 8

Лампочки c двумя разными значениями сопротивлений соединены так, как показано Цепь подключили К источнику напряжения, и мощность, выделяющаяся в каждой из лампочек, оказалась одинаковой. Зависимостью сопротивления лампочек от силы текущего через них тока можно пренебречь. Затем лампочку номером 4 поменяли местами с лампочкой номер 1.


- 1) Увеличилась или уменьшилась суммарная мощность, выделяющаяся в лампах, при подключении к тому же источнику напряжения? (3 балла)
 - а) увеличилась
 - б) уменьшилась
- 2) Найдите отношение P_1/P_2 , где P_1 суммарная мощность, выделяющаяся в цепи изначально, а P_2 суммарная мощность, выделяющаяся в цепи после перемены ламп местами. Ответ округлите до десятых долей. (7 баллов)

Ответ:	1)	2)
	б	2,5

Максимум за задачу 10 баллов.

Задача 9

Две частицы с положительным зарядом е и массой M и третья частица с отрицательным зарядом — е и массой m = M/2 вращаются по круговым орбитам, сохраняя конфигурацию равнобедренного треугольника (см. рисунок). При этом плоскости орбит частиц перпендикулярны основанию треугольника.

- 1) Найдите отношение R_{-}/R_{+} радиусов орбит, где R_{-} радиус орбиты отрицательной частицы, R_{+} положительной. Ответ округлите до целого числа. (5 баллов)
- 2) Найдите отношение длины основания треугольника L к длине его боковой стороны *R*. Ответ округлите до сотых долей. (5 баллов)

Ответ:	1)	2)
	4	ворота 1,25 – 1,27

Максимум за задачу 10 баллов.

Всего за работу 83 балла.