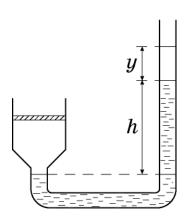
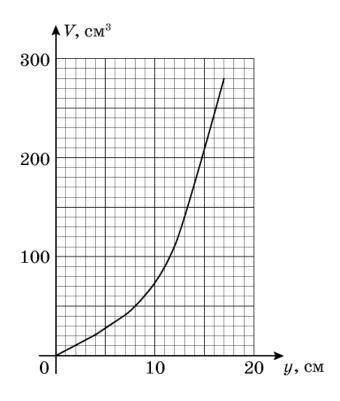
9 класс

Задача 1. Безопасная дистанция. По прямому участку дороги с одинаковой скоростью v друг за другом едут две машины, одна из которых при торможении может двигаться с предельным ускорением a_1 , а другая с a_2 . Если с постоянным ускорение до полной остановки начинает тормозить водитель передней машины, то водитель задней реагирует и нажимает на педаль тормоза не сразу, а с задержкой $\tau = 0.3$ с. В зависимости от того, какая из машин едет впереди, безопасные дистанции, исключающие столкновение между ними, оказываются равными $L_1 = 6$ м или $L_2 = 9$ м. Определите, с какой скоростью едут машины. Оцените разность ускорений Δa машин, если известно, что сами ускорения примерно равны 5 м/с 2 .

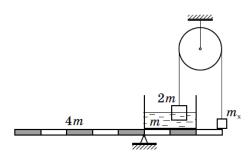
Задача 2. **Масса поршня.** Цилиндрический сосуд с поршнем соединен коническим переходником с трубкой постоянного сечения. Разность уровней воды в правом и левом колене h=20 см. В трубку медленно наливают воду, измеряя объём V добавленной воды и подъём уровня y в правом колене. С помощью графика зависимости V от y найдите массу поршня и объём конической части сосуда. Трение между поршнем и цилиндром не учитывайте. Плотность воды $\rho=1,0$ г/см³, g=10 м/с².





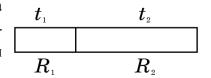
Задача 3. Жидкое равновесие. Прямоугольный легкий сосуд с жидкостью массой m по-

мещен на однородный рычаг массой 4m. В жидкость опущено тело массой 2m (с плотностью меньшей, чем плотность жидкости), удерживаемое нитью, перекинутой через блок (см. рисунок). Какой массы m_x груз необходимо прикрепить к противоположному концунити и разместить на краю рычага, чтобы система осталась в равновесии? Трения в осях рычага и блока нет. Необходимые расстояния можно взять из рисунка.



Задача 4. Электротермодинамика. Два цилиндрических проводника разной длины, но одинакового диаметра, изготовлены из меди. Их сопротивления и температуры (в градусах Цельсия) соответственно равны: R_1 , R_2 , t_1 , t_2 . Проводники соединяют плоскими граня-

ми. Каким окажется сопротивление составного проводника после того, как температуры его частей выровняются? Теплообменом с окружающей средой и тепловым расширением меди пренебречь.



Примечание: сопротивление проводника при температуре t равно: $R = R_0 \left(1 + \beta \left(t - t_0\right)\right)$, где R_0 – сопротивление проводника при $t_0 = 0$ °C; β – температурный коэффициент сопротивления, причём $\beta t \ll 1$.

Задача 5. **Электрический тетраэдр.** В ребра тетраэдра ABCD включены три амперметра с внутренним сопротивлением $R_A = 0.1$ Ом и три вольтметра с внутренним сопротивлением $R_V = 10$ кОм. Определите показания всех приборов при подключении источника с напряжением $U_0 = 1.5$ В.

 $\begin{array}{c}
1 & & \\
A & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\$

- а) к точкам A и D:
- б) к точкам B и C.

Для участия в разборе необходимо зарегистрироваться на nopmane http://abitu.net/vseros

9.1. Безопасная дистанция

Возможное решение

Безопасное расстояние между машинами складывается из разности тормозных путей до полной остановки и длины участка на котором задний автомобиль движется с постоянной

скоростью до начала торможения.
$$L_{\rm l}=\upsilon\tau+\frac{\upsilon^2}{2a_{\rm l}}-\frac{\upsilon^2}{2a_{\rm 2}}\,;$$
 $L_{\rm 2}=\upsilon\tau+\frac{\upsilon^2}{2a_{\rm 2}}-\frac{\upsilon^2}{2a_{\rm l}}\,,$ откуда

$$\upsilon = rac{L_{\mathrm{l}} + L_{\mathrm{2}}}{2 au} = 25 \mathrm{\ m/c}.$$
 $rac{\Delta a}{a_{\mathrm{l}}a_{\mathrm{2}}} = rac{L_{\mathrm{2}} - L_{\mathrm{l}}}{\upsilon^{2}}\,,$ откуда $\Delta a \approx 0,12 \mathrm{\ m/c^{2}}.$

9.2. Масса поршня.

Возможное решение

Условие равновесия поршня: $pS = Mg + p_0S$.

Давление воздуха в сосуде $p = p_0 + \rho g h$ (равновесие столба воды).

Отсюда $M = \rho h S$.

Однако ни сечение поршня, ни сечение трубки не даны.

Обратимся к связи объёма налитой воды и подъёма уровня.

Поскольку давление воздуха в сосуде постоянно, то остаётся постоянной разность уровней воды справа и слева, а именно она равна h, и поэтому оба эти уровня поднимаются на y.

Пока вода не попала в сосуд V = 2sy, где s сечение трубки.

Этому отвечает начальная линейная часть графика, по её наклону находится сечение трубки $s = (1/2)(\Delta V/\Delta y)_{\text{нач}} = 2.5 \text{ cm}^2$.

Искривлённая часть графика отвечает заполнению конической части сосуда. Когда вода дойдёт до цилиндрической части, то приращение объёма будет $\Delta V = S\Delta y + s\Delta y$. Это отвечает конечной линейной части графика, из её наклона находим $S + s = (\Delta V/\Delta y)_{\text{кон}} = 35 \text{ cm}^2$, а $S = 32,5 \text{ cm}^2$.

Тогда $M = \rho h S = 650$ г.

Объём конической части сосуда $V_x = \Delta V - s \Delta y$, где $\Delta V = 120$ см³ и $\Delta y = 9$ см для искривлённого участка графика, тогда $V_x = 98$ см³.

9.3. Жидкое равновесие

Возможное решение

Сила давления на дно сосуда F распределена равномерно по всей площади и не зависит от места погружения в жидкость тела 2m. При этом, $F = mg + F_a$, где F_a — сила, противодействующая силе Архимеда, действующей на тело 2m.

Из условия равновесия тела 2m: $T + F_a = 2mg$, где T — сила натяжения нити.

Из условия равновесия груза m_x : $T + N = m_x g$, где N - сила реакции опоры.

Правило моментов для рычага относительно точки опоры имеет вид: 4mgl = Fl + N3l.

Неизвестных больше чем уравнений и без введения дополнительных условий систему решить невозможно.

LII Всероссийская олимпиада школьников по физике. Региональный этап. 17 января 2018 г.

Предположим, что груз m_x — очень легкий, тогда рычаг начнет перевешивать, его правая часть пойдет вверх и нить провиснет (T=0). Решая систему уравнений, получим нижнюю границу значений масс $m_x = m/3$.

В случае если m_x велико, правая часть рычага начинает движение вниз, тело 2m перестает действовать на воду. Сила Архимеда обращается в ноль. Тогда решение системы дает $m_x = 3m$.

Следовательно, система в равновесии, если масса тела m_x лежит в диапазоне $m/3 < m_x < 3m$.

9.4. Электротермодинамика

Возможное решение

Сопротивление R_i цилиндров пропорционально их длине, как и их теплоемкость C_i . Следовательно,

$$\frac{R_1}{R_2} = \frac{C_1}{C_2}. (1)$$

Запишем уравнение теплового баланса: $C_1t_1 + C_2t_2 = (C_1 + C_2)t$.

Из него, с учётом (1) получим:
$$t = \frac{C_1t_1 + C_2t_2}{C_1 + C_2} = \frac{R_1t_1 + R_2t_2}{R_1 + R_2} \ .$$

Изменение температуры первого цилиндра

$$\Delta t_1 = t - t_1 = \frac{R_2 (t_2 - t_1)}{R_1 + R_2}; \qquad \Delta t_2 = t - t_2 = \frac{R_1 (t_1 - t_2)}{R_1 + R_2}.$$

Изменение сопротивления первого цилиндра

$$\Delta R_1 = R_1 \beta \Delta t_1 = \beta \frac{R_1 R_2 (t_2 - t_1)}{R_1 + R_2}.$$

Изменение сопротивления второго цилиндра

$$\Delta R_2 = R_2 \beta \Delta t_2 = \beta \frac{R_1 R_2 (t_1 - t_2)}{R_1 + R_2}.$$

Изменение сопротивления составного цилиндра $\Delta R = \Delta R_1 + \Delta R_2 = 0$.

Следовательно, сопротивление составного цилиндра при нагреве не изменится и будет равно $R = R_{\rm l} + R_{\rm 2} \, .$

9.5. Электрический тетраэдр

Возможное решение

Вопрос (а). На рис. 1 приведена эквивалентная схема цепи для случая (а). Сила тока, текущего через амперметр, подключенный к точкам A и D, равна $I_{\scriptscriptstyle AD} = U_{\scriptscriptstyle 0} \, / \, R_{\scriptscriptstyle A} =$ 15 ${
m A}$. Заметим, что $R_{\scriptscriptstyle A} \, \square \, R_{\scriptscriptstyle V}$. Поэтому при расчёте силы токов, текущих через вольтметры, сопротивлением амперметров можно пренебречь. Поскольку

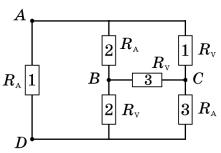


Рис. 1

$$U_{AC} \approx U_0$$
, $U_{BC} \approx U_0$, $U_{BD} \approx U_0 = 1.5 \,\mathrm{B}$,

считать онжом

$$I_{AC} \approx U_0 / R_B = 1.5 \cdot 10^{-4} \text{ A}$$

$$I_{AC} \approx U_0 / R_B = 1.5 \cdot 10^{-4} \,\text{A}, \qquad I_{BC} \approx U_0 / R_B = 1.5 \cdot 10^{-4} \,\text{A}, \qquad \text{M}$$

$$I_{BD} \approx U_0 \, / \, R_B = 1,5 \cdot 10^{-4} \, \mathrm{A} \, . \qquad I_{AB} = I_{BC} + I_{BD} = 3,0 \cdot 10^{-4} \, \mathrm{A} \, . \qquad \mathrm{Aналогично},$$

$$I_{CD} = I_{BC} + I_{AC} = 3,0 \cdot 10^{-4} \, \mathrm{A} \, . \qquad \mathrm{Aналогично},$$

Вопрос (б). На рис. 2 приведена эквивалентная схема цепи для случая (б). Напряжение на вольтметре, подключенном к точкам B и C, равно $U_{BC} = U_0 = 1,5 \,\mathrm{B}$. Сила тока, $_{
m amпepмerpы}$ $R_{
m v}$ 3текущего

$$I_{BA} = I_{AD} = I_{DC} = U_0 / (3R_A) = 5,0 \text{ A}.$$

Напряжение
$$U_{BD} = U_{BA} + U_{AD} = 2R_A I_{BA} = 1,0 \text{ B}$$
.

Аналогично,
$$U_{AC} = U_{AD} + U_{DC} = 2R_{A}I_{DC} = 1,0 \; \mathrm{B}$$
 .

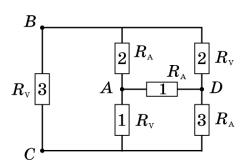


Рис. 2

9 класс

Критерии оценивания

Запапа	1	Безопасная дистанция.	
Задача	1.	Безопасная дистанция.	

5. Показано, что $\Delta R = 0$, т.е. $R = R_1 + R_2$.

3 a ₂	дача 1. Безопасная дистанция.		
1.	Выражение для длины участка, на котором задний автомобиль		
дви	движется с постоянной скоростью до начала торможения 1 бал.		
2.	Найдены тормозные пути машин до полной остановки	2 балла	
3.	Получены выражения для безопасных расстояний	2 балла	
4.	Получена формула и найдено численное значение скорости	2 балла	
5.	Сделана оценка разности ускорений	3 балла	
3 a ₂	цача 2. Масса поршня.		
1.	Условие равновесия поршня ($pS = Mg + p_oS$)	1 балл	
2.	Давление воздуха в сосуде $(p=p_o+\rho gh)$	1 балл	
3.	Выражение для массы поршня ($M = \rho hS$)	1 балл	
4.	Постоянство разности уровней и равенство их изменений $(0.5 + 0.5)$	1 балл	
5.	Связь объёма и y для начального участка ($V = 2sy$)	0,5 балла	
6.	Анализ начального участка графика и нахождение сечения трубки		
	$(s=(1/2)(\Delta V/\Delta y)_{\text{Hay}}=2.5 \text{ cm}^2)$	1 балл	
7.	Связь объёма и у для конечного участка ($\Delta V = S \Delta y + s \Delta y$)	0,5 балла	
8.	Анализ конечного участка графика и нахождение сечения поршня		
	$(S + s = (\Delta V/\Delta y)_{KOH} = 35 \text{ cm}^2$, a $S = 32,5 \text{ cm}^2$)	1 балл	
9. Нахождение массы поршня ($M = \rho h S = 650 \Gamma$)		1 балл	
10.	Нахождение объёма конической части ($V_x = \Delta V - s \Delta y = 98$ см ³)	2 балла	
3a ₂	дача 3. Жидкое равновесие		
1.	Учет равномерного распределения силы давления по дну сосуда	1 балл	
2.	Условие равновесия тела 2 <i>m</i>	1 балл	
3.	Условие равновесия тела $m_{\rm x}$	1 балл	
4.	Правило моментов для рычага	2 балла	
5.	Обосновано и найдено минимальное значение $m_{\rm x}$	2 балла	
6.	Обосновано и найдено максимальное значение $m_{\rm x}$	2 балла	
7.	Явно указан диапазон допустимых масс $m_{\rm x}$	1 балл	
3 a ₂	цача 4. Электротермодинамика.		
1.	Отмечено соотношение (1)	2 балла	
2.	Найдена установившаяся температура	2 балла	
3.	Найдены Δt_1 и Δt_2	2 балла	
4.	Найдены ΔR_1 и ΔR_2	2 балла	

2 балла

LII Всероссийская олимпиада школьников по физике. Региональный этап. 17 января 2018 г.

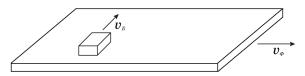
Задача 5. Электрический тетраэдр.

Ответ на вопрос (а)

1.	Идея пренебречь сопротивлением амперметров на участках AB и CD	1 балл
2.	Установлено, что при этом все вольтметры подключены параллельно	1 балл
3.	Получен верный ответ для показаний амперметра AD и всех вольтметров	1 балл
4.	Идея определения силы токов через амперметры AB и CD через первое	
	правило Кирхгофа	1 балл
5.	Получен верный ответ для силы тока через амперметры AB и CD	2 балла
Ot	вет на вопрос (б)	
1.	Идея исключить вольтметры BD и AC на начальном этапе решения	1 балл
2.	Получен верный ответ для показаний амперметров с использованием п.1	
	и показания вольтметра BC	1 балл
3.	Идея определения показаний вольтметров BD и AC через сумму	
	напряжений на амперметрах	1 балл
4.	Получен верный ответ для показаний вольтметров BD и AC	1 балл

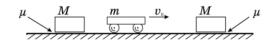
10 класс

Задача 1. Просто трение. На гладкой горизонтальной поверхности лежит лист фанеры, на котором находится стальной брусок. Одновременно листу фанере и бруску сообщают скоро-



сти υ и $\sqrt{3}\upsilon$ относительно льда, причём их направления взаимно перпендикулярны. В процессе дальнейшего движения, из-за наличия трения, скорости бруска и доски изменяются. Определите минимальные скорости фанеры и бруска (относительно льда) в процессе их движения. Масса бруска равна массе фанеры.

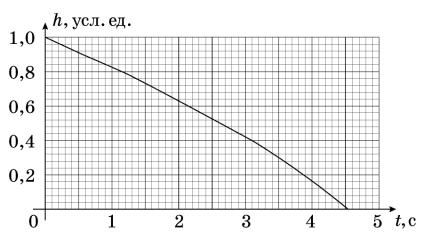
Задача 2. Расталкивание. На горизонтальной поверхности покоятся два бруска массой M каждый. Между брусками помещают тележку массой m (m=M/3) и сообщают ей начальную скорость v_0 .



Найдите, насколько сдвинутся бруски в результате абсолютно упругих столкновений с тележкой, если за время между столкновениями они успевают останавливаться. Время соударения тележки с брусками бесконечно мало. Коэффициенты трения между брусками и полом равен μ . Ускорение свободного падения g.

Задача 3. Из глубин... Со дна глубокого озера всплывает пузырёк воздуха. На него действует сила сопротивления F = krv, где r — радиус пузырька, v — его скорость, k - постоянная. Вблизи дна радиус пузырька $r_0 = 1,0\,$ мм. На рис. 1 представлен график зависимости глубины h на которой находится пузырёк, от времени t, прошедшего от начала его движения.

- 1) Какова глубина озера?
- 2) За какое время τ_1 всплывёт **1,0** пузырёк, радиус которого у дна водоёма равен $r_1 = 0.5$ мм? **0,6**
- 3) За какое время τ_2 пузырёк, радиус которого у дна водоёма равен $r_0 = 1,0$ мм, 0,2 всплывёт со дна водоёма глубиной H = 10 м?



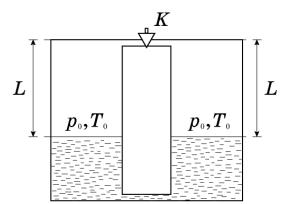
18 января, на портале http://abitu.net/vseros будет проведён онлайн-разбор решений задач теоретического тура. Начало разбора (по московскому времени): 7 класс — 11.00; 8 класс — 12.00; 9 класс — 13.00; 10 класс — 14.30; 11 класс — 16.00.

Для участия в разборе необходимо зарегистрироваться на портале http://abitu.net/vseros

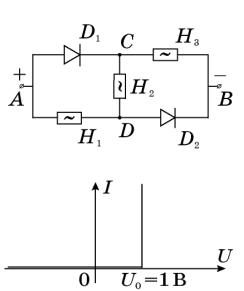
Примечание 1. Давление водяных паров в пузырьке, поверхностное натяжение воды, изменение формы пузырька и изменение температуры воздуха в пузырьке не учитывайте. Примечание 2. Плотность воды $\rho = 1,0\cdot 10^3~{\rm kr/m}^3$, атмосферное давление $p_0 = 1,0\cdot 10^5~{\rm Ha}$, $g = 10~{\rm m/c}^2$, объем пузырька $V = \frac{4}{3}\pi r^3$.

Задача 4. Частичный нагрев. Два одинаковых вертикальных цилиндра соединены сверху и снизу трубками пренебрежимо малого объёма. В верхней трубке имеется кран K, который исходно открыт. В цилиндры налита жидкость плотности ρ . Оставшийся объём ци-

линдров высоты L заполнен газом с давлением p_0 и комнатной температурой T_0 . При неизменной температуре газа в левом цилиндре газ в правом нагрели до температуры T и закрыли вентиль. Нагреватель отключили. Когда воздух в правом цилиндре остыл до комнатной температуры, разность уровней жидкости в цилиндрах стала 2h. Найдите температуру T, если в левом цилиндре температура газа всё время оставалась комнатной. Ускорение свободного падения g.



Задача 5. Нелинейная электрическая цепь. Электрическая цепь (верхний рисунок) состоит из двух одинаковых диодов (D_1 и D_2), трёх одинаковых нелинейных элементов (H_1 , H_2 и H_3) и батарейки, поддерживающей постоянное напряжение $U_{\rm AB}=5,0$ В. Идеализированная вольтамперная характеристика диода приведена на нижнем рисунке. Сила тока, протекающего через нелинейный элемент, может быть определена по формуле: $I=kU^2$, где U — напряжение на элементе, k=0,1 A/ B^2 — постоянный коэффициент. Определите: 1) напряжения U_H на нелинейных элементах; 2) силы токов, протекающих через диоды.



18 января, на портале http://abitu.net/vseros будет проведён онлайн-разбор решений задач теоретического тура. Начало разбора (по московскому времени): 7 класс — 11.00; 8 класс — 12.00; 9 класс — 13.00; 10 класс — 14.30; 11 класс — 16.00.

Для участия в разборе необходимо зарегистрироваться на портале http://abitu.net/vseros

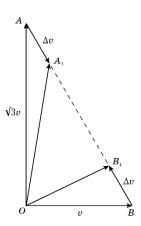
10.1. Просто трение

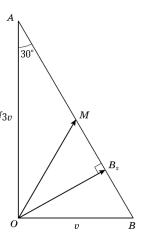
Возможное решение

Рассмотрим векторы начальных скоростей бруска и фанеры и их изменения за некоторый малый промежуток времени Δt . На рисунке вектор OA соответствует скорости бруска, вектор OB скорости фанеры в начальный момент времени. Векторы изменений их скоростей равны по модулю (так как массы равны) и направлены $\sqrt{3}v$ вдоль вектора их относительной скорости AB (скорость бруска относительно фанеры — вектор AB, а сила трения, действующая на брусок направлена от $A \ltimes B$ и наоборот для листа фанеры).

Через время Δt концы векторов новых скоростей OA_1 и OB_1 , попрежнему лежат на AB и силы трения, действующие на тела, попрежнему направлены вдоль AB. Скорости бруска и фанеры будут изменяться до тех пор, пока не выровняются по величине и направлению, а точки A_1 и B_1 не окажутся на середине AB. Дальнейшее очевидно из геометрии. Скорость бруска уменьшается, пока не достигнет постоянного значения OM, $OM = AB/2 = \upsilon$. $\sqrt{3}\upsilon$ Минимальная скорость листа фанеры достигается прежде, чем скорости установятся — длина вектора OB_2 равна $OB_2 = OA \sin 30^\circ = \sqrt{3}\upsilon/2$.

Таким образом, минимальная скорость бруска относительно льда при движении равна υ , а фанеры, соответственно $\sqrt{3}\upsilon/2$.





10.2. Расталкивание

Возможное решение

- 1. После первого столкновения скорость правого бруска $u_1 = 2mv/(M+m) = v/2$, скорость тележки $v_1 = v(m-M)/(M+m) = -v/2$ (из законов сохранения энергии и импульса). Знак минус означает, что тележка начнёт двигаться влево.
- 2. Из законов сохранения энергии и импульса при столкновении с левым бруском получим, что тележка будет двигаться вправо со скоростью v/4. А скорость правого бруска после второго столкновения с тележкой станет $v_2 = v/8 = v_1/4$. Соответственно $v_3 = v_2/4$ и т.д.
- 3. А) Кинетические энергии правого бруска будут изменяться также в геометрической прогрессии. но с показателем 1/16. Отсюда можно найти полное перемещение правого бруска, а затем и левого.
- Б) Можно заметить, что после каждого столкновения отношение кинетических энергий правого и левого брусков остаётся одинаковым и равным 4, тогда $L_{\rm Лев} = L_{\rm Прав} / 4$. С учётом работы силы трения имеем $m\upsilon^2/2 = \mu Mg \left(L_{\rm Лев} + L_{\rm Прав}\right)$, а так как m = M/3, то $L_{\rm Прав} = 2\upsilon^2/(15\mu g)$ и и $L_{\rm Лев} = \upsilon^2/(30\mu g)$.

10.3. Из глубины...

Возможное решение

Массу пузырька воздуха можно не учитывать, поэтому сила F сопротивления движению равна силе Архимеда $F_{\rm A}$: $F = F_{_{\! A}}, \, {\rm или} \, {\rm иначе} : \qquad kr \upsilon = \frac{4}{3} \pi r^3 \rho g \; .$

Отсюда найдём $\upsilon = \frac{4\pi}{3} \frac{r^2 \rho g}{k}$.

В соответствии с законом Бойля-Мариотта (pV = const) запишем:

$$\frac{4\pi}{3}r_0^3(p_0+\rho gh_0) = \frac{4\pi}{3}r^3(p_0+\rho gh).$$

Зависимость радиуса пузырька от глубины такова:

$$r = r_0 \left(\frac{p_0 + \rho g h_0}{p_0 + \rho g h} \right)^{1/3}.$$

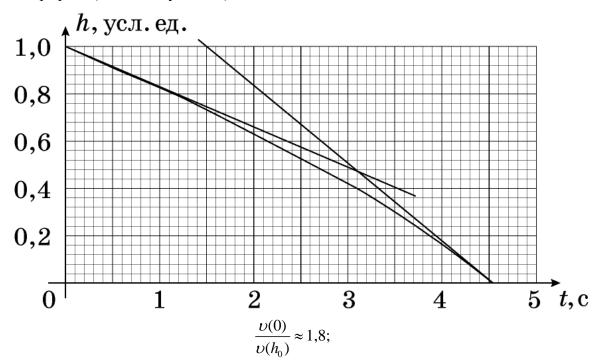
Откуда

$$\upsilon = \frac{4\pi\rho g r_0^2}{3k} \left(\frac{p_0 + \rho g h_0}{p_0 + \rho g h} \right)^{2/3}.$$

Скорости пузырька вблизи дна $\upsilon(h_0)$ и у поверхности $\upsilon(0)$ относятся как

$$\frac{\upsilon(0)}{\upsilon(h_0)} = \left(\frac{p_0 + \rho g h_0}{p_0}\right)^{2/3}.$$

Отношение скоростей можно определить через отношение угловых коэффициентов касательных, проведенных к графику зависимости h(t) в соответствующих точках. Для нашего графика (данного в условии)



LII Всероссийская олимпиада школьников по физике. Региональный этап. 17 января 2018 г.

$$\frac{p_0 + \rho g h_0}{p_0} \approx 2,4;$$
$$h_0 \approx 14 \text{ M}.$$

Для ответа на второй вопрос задачи достаточно заметить, что на любой глубине скорость пузырька, пропорциональна квадрату его начального радиуса. Соответственно, для пузырька с начальным радиусом 0,5 мм скорость будет в четыре раза меньше, чем для пузырька радиусом $r_0 = 1$ мм, а время движения будет в четыре раза больше, то есть примерно 18 с.

При ответе на третий вопрос задачи найдем радиус пузырька, имевшего $r_0 = 1$ мм на глубине 14 м, когда он достигнет глубины 10 м.

$$\vec{r_0} = r_0 \left(\frac{p_0 + \rho g h_0}{p_0 + \rho g h} \right)^{1/3} = r_0 \left(\frac{24}{20} \right)^{1/3}$$

Такой же пузырек в соответствие с графиком движется от глубины 10 м до поверхности

t'=2,9 с. Пузырек, имеющий на этой глубине радиус $r_0=1$ мм будет двигаться в $\left(\frac{r_0}{r_0}\right)^2$ раз

медленнее, то есть достигнет поверхности за время

$$t = t' \left(\frac{r_0}{r_0}\right)^2 \approx 3.3 \text{ c.}$$

10.4. Частичный нагрев

Возможное решение

- 1. Пусть S сечение цилиндров, ν полное число молей газа, R газовая постоянная. Из уравнения состояния идеального газа для начальной ситуации имеем: $2p_0SL = \nu RT_0$.
- 2. При открытом вентиле давление газа слева и справа одинаково, обозначим его р.
- 3. Из уравнения состояния в применении к каждому цилиндру при открытом вентиле и разных температурах имеем: $pSL = v_1RT_0$; $pSL = v_2RT$, где v_1 и v_2 число молей слева и справа.
- 4. Так как суммарное число молей неизменно, то $v = v_1 + v_2$.
- 5. Отсюда выражаем давление $p = 2p_0T/(T + T_0)$.
- 6. После закрытия вентиля число молей газа слева и справа остаются прежними. В конце температура везде T_0 , а объёмы газа слева и справа соответственно (L+h)S u (L-h)S.
- 7. Разница давлений газа при перепаде уровней $p_1 p_2 = 2\rho g h$.
- 8. Выразим давления через уравнение состояния и предыдущие соотношения: $v_1RT_0/(L+h)S v_2RT_0/(L-h)S = pL/(L+h) pLT_0/T(L-h) = 2\rho gh$.
- 9. Подставив $p = 2p_0T/(T+T_0)$ получим уравнение для искомой T: $p_0LT/(T+T_0)(L+h) p_0LT_0/(T+T_0)(L-h) = \rho gh$.
- 10. Откуда $T = T_0(L+h)(p_0L+\rho gh(L-h))/(L-h)(p_0L-\rho gh(L+h)).$

10.5. Нелинейная электрическая цепь

Возможное решение

Каждый диод может быть открыт или закрыт. Всего возможны три варианта:

- а) оба диоды закрыты;
- б) один диод закрыт (например, D_1), другой (D_2) отрыт;
- в) оба диоды открыты.

Случай (a)
$$U_{AD} = U_{DC} = U_{CB} = U_{AB} / 3$$
. $U_{AC} = U_{AD} + U_{DC} > U_0$ — не подходит.

Случай (в)
$$U_{AC} = U_{AD} = U_0 = 1 B$$
.

$$U_1 = U_3 = U_{AB} - U_0 = 4 B$$
.

$$U_2 = U_{AB} - 2U_0 = 3 B.$$

$$I_{D1} = I_{D2} = I_{N3} + I_{N2} = kU_3^2 + kU_2^2 = 2,5 A.$$

10 класс Критерии оценивания

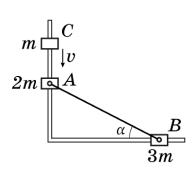
Задача 1. Просто трение.	
1. Утверждение, что силы трения направлены параллельно	
относительной скорости бруска и фанеры	1 балл
2. Вывод о том, что направление относительной скорости и	
сил трения остается неизменным в процессе всего движения	3 балла
3. Обоснованно получены минимальные скоростей бруска и фанеры	
по 3 балла	6 баллов
Примечание. За математические ошибки при верной физической модели,	позволяющей
получить корректный результат, но допущенной математической ошиб	ке снимается
1 балл.	
Задача 2. Расталкивание.	
1. Нахождение скоростей после 1-го столкновения	3 балла
2. Нахождение скоростей после последующих столкновений	3 балла
3А. Нахождение отношения энергий и перемещений из геометрической	
прогрессии $L_{\text{Прав}} = 2v^2/(15\mu g)$ и $L_{\text{Лев}} = v^2/(30\mu g)$	4 балла
3Б. См. решение варианта Б	4 балла
Баллы за 3А и 3Б не суммируются, это разные варианты решений!	
Задача 3. Из глубин	
1. Указано, что из-за малости массы воздуха в пузырьке, можно	
приравнивать силу сопротивления движению силе Архимеда	1 балл
2. Получено выражение для связи скорости пузырька с его размером	1 балл
3. С использованием закона Бойля-Мариотта получено уравнение	
для связи радиуса пузырька на глубине h с начальным размером	
пузырька и глубиной	1 балл
4. Получено выражение для зависимости скорости пузырька	
от начального размера и глубины	1 балл
5. Обоснованно получен ответ для глубины озера, в пределах 10 - 20	2 балла
6. Обоснованно получен ответ для времени всплытия пузырька	
с радиусом 0,5 мм	1 балл
7. Идея ответа на третий вопрос задачи через сравнение времен всплытия	
пузырьков разных радиусов с одной глубины и верный пересчет размера	
пузырька для глубины 10 м именно для этой цели (1 балл +1 балл)	2балла
8. Получен обоснованный ответ на третий вопрос задачи в пределах	
2,3 - 4,3	1 балл

Задача 4. Частичный нагрев.

1.	Уравнение состояния для начальной ситуации ($2p_{o}SL = \nu RT_{o}$)	1 балл
2.	Равенство давлений при открытом вентиле	0,5 балла
3.	Уравнение состояния в случае разных температур	
	$(pSL = v_1RT_0; pSL = v_2RT)$	1 балл
4.	Неизменность суммарного числа молей ($v = v_1 + v_2$)	0,5 балла
5.	Нахождение давления $p \ (p = 2p_{\rm o}T/(T + T_{\rm o}))$	1 балл
6.	Ситуация после закрытия вентиля и остывания	1 балл
7.	Перепад давлений $(p_1-p_2=2\rho gh)$	1 балл
8.	Уравнения для искомого T	2 балла
9.	Нахождение искомого T (См. ответ в тексте)	2 балла
3a)	дача 5. Нелинейная электрическая цепь.	
1.	Доказано, что диоды открыты, ток через диоды течет, напряжения	
	на диодах равно 1 В	2 балла
2.	Получено значение напряжения на элементах Н1 и Н3	2 балла
3.	Получено значение напряжения на Н2 с верным указанием	
	направления тока через него или полярности напряжения	2 балла
	(при неверно указанной полярности пункт оценивается в 1 балл,	
	то же самое, если направление тока или полярность напряжения	
	вообще не упоминается)	
4.	Верно найдены токи через все элементы	2 балла
5.	Использовано первое правило Кирхгофа для нахождения тока	
	через диоды	1 балл
6.	Обоснованно получен верный ответ для тока через диоды	1 балл

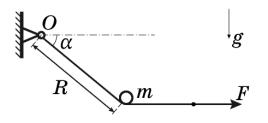
11 класс

Задача 1. Три муфты. Три муфты $(A, B \cup C)$ массы которых равны 2m, $3m \cup m$, соответственно, могут скользить без трения по двум горизонтальным направляющим, пересекающимся под прямым углом. Муфты $A \cup B$ с помощью шарниров соединены с лёгким, жёстким, неупругим стержнем так, что угол между стержнем и направляющей, на которой надета муфта B, равен α . Между муфтой C, движущейся со скоростью v, и покоящейся муфтой A, происходит неупругое столкновение. Определите скорости муфт сразу после соударения.



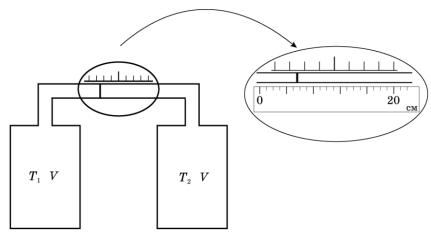
Задача 2. Отрыв цилиндра. Тонкая лёгкая нерастяжимая лента прикреплена к стене в точке O (см. рис.). На ленте удерживают небольшой цилиндр массой m так, что наклон-

ный участок ленты длины R образует угол α с горизонталью. К свободному концу ленты приложили силу F и цилиндр отпустили. Найдите его скорость в момент отрыва от ленты. Сила F все время направлена горизонтально и постоянна по величине. Считайте, что трения нет, ускорение свободного падения равно g.



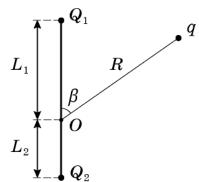
Задача 3. Дифференциальный термометр. Два одинаковых сосуда с объемами V=1,0 л каждый соединены трубкой длиной L=300 см и поперечным сечением S=1 см 2 с небольшим поршнем внутри, который может скользить в ней без трения (см. рис.). Когда температуры газов в сосудах равны $T_0=300$ К поршень располагается посередине трубки. При незначительных изменениях температур в сосудах, поршень смещается вдоль шкалы,

нанесенной рядом. Перерисовав в тетрадь, проградуируйте эту шкалу (оцифруйте ее деления в градусах Кельвина) чтобы по ней можно было считывать разность температур $\Delta T = T_1 - T_2$ (с учетом знака!). Будет ли эта шкала линейной? На выносном рисунке рядом со шкалой помешена линейка



18 января, на портале http://abitu.net/vseros будет проведён онлайн-разбор решений задач теоретического тура. Начало разбора (по московскому времени): 7 класс — 11.00; 8 класс — 12.00; 9 класс — 13.00; 10 класс — 14.30; 11 класс — 16.00. Для участия в разборе необходимо зарегистрироваться на портале http://abitu.net/vseros

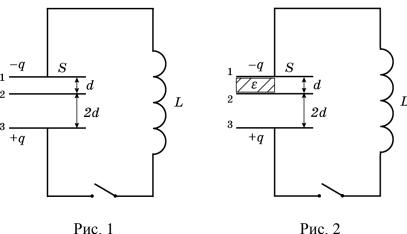
Задача 4. И так можно измерять. В точке O к стержню привязана непроводящая нить длиной R с зарядом q на конце. Известный эталонный заряд Q_2 и измеряемый заряд Q_1 установлены на расстояниях Q_2 и Q_1 от точки Q_2 все заряды одного знака и могут считаться точечными.



- Найдите величину заряда Q_1 , если в состоянии равновесия нить отклонена на угол β от отрезка, соединяющего заряды Q_2 и Q_1 .
- Какой величины заряды Q_1 можно измерить таким способом в случае, если $L_1 = 2 L_2$, $R = 3 L_2$?

Задача 5. Составной конденсатор. Электрическая цепь состоит из катушки индуктивностью L, трёх пластин (1, 2, 3) площадью S и ключа. Расстояние между пластинами равны d и 2d (рис. 1). Внешние пластины имеют заряды q и -q.

- 1) Определите максимальную силу тока через катушку после замыкания ключа.
- 2) Определите максимальную силу тока через катушку после замыкания ключа в случае, если половина пространства между пластинами 1 и 2 заполнена диэлектриком с проница-емостью ε (рис. 2).



11.1. Три муфты

Возможное решение

Пусть в результате удара через стержень передаётся импульс p: $p = \int F(t)dt$, где F — сила упругости.

Запишем изменение импульса для муфт А и С:

$$m\upsilon - p\sin\alpha = 3m\upsilon_{AC}$$
.

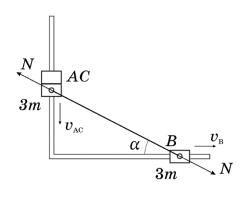
Тогда изменение импульса для муфты B равно

$$p\cos\alpha = 3m\nu_{\rm B}$$
.

Из кинематической связи следует: $\upsilon_{AC} \operatorname{tg} \alpha = \upsilon_{B}$. Решая полученные уравнения найдём:

$$v_{AC} = v \frac{\cos^2 \alpha}{3};$$

$$v_B = v \frac{\sin(2\alpha)}{6}.$$



11.2. Отрыв цилиндра

Возможное решение

При отсутствии трения натяжение вдоль ленты одинаково по величине и T = F для любого участка ленты.

Если сила давления на ленту со стороны шайбы \vec{N} , а $\vec{T_1}$ и $\vec{T_2}$ натяжения ленты справа и слева от обхватывающего шайбу участка, то $\vec{N} + \vec{T_1} + \vec{T_2} = 0$. При пренебрежимо малой массе этого участка сумма векторов сил, приложенных к нему равна нулю.

В момент отрыва шайба от ленты $\vec{N}=0$, а $\vec{T_1}+\vec{T_2}=0$. Так как натяжение направлено вдоль ленты, то отрыв цилиндра от ленты происходит в момент, когда вся лента становится горизонтальной.

При переходе в горизонтальное положение свободный конец ленты смещается по горизонтали на $x = R(1-\cos\alpha)$ и работа силы F, приложенной к этому концу, $A = Fx = FR(1-\cos\alpha)$.

Эта работа идёт на приращение механической энергии цилиндра:

$$A = FR \left(1 - \cos \alpha\right) = m\upsilon^2 / 2 + mgR \sin \alpha \text{ , откуда } m\upsilon^2 / 2 = R \Big[F \left(1 - \cos \alpha\right) - mg \sin \alpha \Big],$$
 или $\upsilon = \sqrt{2R \Big[F \left(1 - \cos \alpha\right) / m - g \sin \alpha \Big]}$.

Ответ имеет смысл если подкоренное выражение положительно.

11.3. Дифференциальный термометр

Возможное решение

Для начального состояния газов в сосудах можно записать уравнение Менделеева-Клапейрона: $\frac{p_0(V+LS/2)}{T_0} = \nu R$, здесь p_0 – давление газа вначале, а $V_0 = V + LS/2$.

Если температура в левом сосуде повысится на ΔT_1 , а в правом понизится на ΔT_2 и поршень сместится влево на ΔL , то новые уравнения состояния примут вид: $\frac{p(V_0 + \Delta LS)}{T_0 + \Delta T_1} = \nu R$ и

$$\frac{p(V_0 - \Delta LS)}{T_0 - \Delta T_2} = \nu R$$
 . Приравнивая левые части с учетом $\Delta LS << V$, получим:

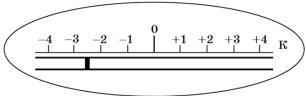
$$T_0-\Delta T_2$$

$$\Delta L=rac{V_0(\Delta T_1+\Delta T_2)}{2ST_0}\,, \ {
m otkyda, \ yчитывая, \ что} \ \Delta T=\Delta T_1+\Delta T_2, \ {
m okohчательно} \ \Delta L=rac{V_0\Delta T}{2ST_0}\,. \ {
m M3}$$

выведенного уравнения следует, что при малых изменениях температур сосудов малые смещения поршня связаны линейно с разностью температур ΔT .

Заметим, что 4-м делениям шкалы термометра соответствует 9 см. Следовательно, цена деления шкалы $\Delta T^{\partial e \pi} = \frac{2ST_0\Delta L_1}{V+LS/2} \approx 1,2$ К.

Таким образом, шкала термометра, показывающего разность температур T_1 – T_2 должна выглядеть так:



11.4. И так можно измерять

Возможное решение

Условие равновесия заряда на конце нити: равенство нулю суммы кулоновских сил со стороны Q_1 и Q_2 и натяжения нити, направленного к точке Q_2 .

Исключим натяжение, рассмотрев составляющие кулоновских сил, поперечные нити. Из условия равновесия следует

еречные нити. Из условия равновесия
$$\frac{Q_{\rm l}\sin\alpha_{\rm l}}{R_{\rm l}^2} = \frac{Q_{\rm 2}\sin\alpha_{\rm 2}}{R_{\rm 2}^2}, \tag{1}$$

где R_1 и R_2 расстояния от конца нити до зарядов, а α_1 и α_2 углы, образуемые кулоновскими силами с нитью.

Поскольку
$$R_1 \sin \alpha_1 = L_1 \sin \beta$$
, $R_2 \sin \alpha_2 = L_2 \sin \beta$ (2)

и
$$\frac{Q_1 L_1}{R_1^3} = \frac{Q_2 L_2}{R_2^3}$$
, то $Q_1 = Q_2 \left(\frac{L_2}{L_1}\right) \left(\frac{R_1}{R_2}\right)^3$ (3)

Из теоремы косинусов находим $R_1^2 = R^2 + L_1^2 + 2RL_1 \cos \beta$, $R_2^2 + L_2^2 + 2RL_2 \cos \beta$, (4)

Откуда находим
$$Q_1 = Q_2 \left(\frac{L_2}{L_1}\right) \left(\frac{R^2 + L_1^2 - 2RL_1 \cos \beta}{R^2 + L_2^2 + 2RL_2 \cos \beta}\right)^{3/2}$$
 (5)

При нити, отклонённой от прямой, соединяющей заряды Q_1 и Q_2 , равновесие устойчиво так как с изменением β возникнет возвращающая сила. При $\beta = 0$ и 180° равновесие будет при любом Q_1 , но оно не обязательно устойчиво.

Минимальный измеримый заряд Q_{\min} достигается при стремлении β к 0, а максимальный Q_{\max} – к 180° .

(6)

При указанных в условии значениях $L_{\!\scriptscriptstyle 1}=2L_{\!\scriptscriptstyle 2},\;R=3L_{\!\scriptscriptstyle 2}$ получим, что при

$$Q_{\min} = \frac{1}{128} Q_2$$
 и $Q_{\max} \ge \frac{10^3}{128} Q_2 = \frac{125}{16} Q_2$. (7)

Более компактная запись решения получается, если задачу решать в векторном виде.

11.5. Составной конденсатор

Возможное решение

1) Три пластины представляют собой два последовательно соединённых конденсатора емкостью $C_1 = \frac{\varepsilon_0 S}{d}$, $C_2 = \frac{\varepsilon_0 S}{2d}$. Заряд на обоих конденсаторах равен q. Ёмкость эквивалентного конденсатора $C_{2_{\mathrm{KB}}} = \frac{\varepsilon_0 S}{3d}$.

Запишем закон сохранения энергии:

$$\frac{q^2}{2C_1} + \frac{q^2}{2C_2} = \frac{LI_{\text{max}}^2}{2}.$$
 (1)

Из записанных уравнений найдём

$$I_{\max} = q \sqrt{\frac{3d}{\varepsilon_0 SL}}.$$

2) Верхний конденсатор можно представить как два, соединённых параллельно:

$$C_{11} = \frac{\varepsilon \varepsilon_0 S / 2}{d}, \ C_{12} = \frac{\varepsilon_0 S / 2}{2d}$$
. Их суммарная емкость $C_1 = \frac{\varepsilon_0 S}{2d} (1 + \varepsilon)$.

В рассматриваемом случае закон сохранения выглядит так же как (1). После подстановки в него выражений для C_{11} и C_{12} , получим:

$$I_{\text{max}} = q \sqrt{\frac{2d}{\varepsilon_0 SL} \frac{2+\varepsilon}{1+\varepsilon}}.$$

11 класс Критерии оценивания

3a ₂	дача 1. Три муфты	
1.	Идея связи изменения импульсов шайб на разных стержнях	
	с проекцией силы реакции стержня	2 балла
2.	Получено соотношение для изменения импульсов шайб	
	$\Delta p_{\rm AC} = \Delta p_{\rm B} \mathrm{tg} \alpha$	2 балла
3.	Получено соотношение для связи $\upsilon_{ ext{AC}}$ и $\upsilon_{ ext{B}}$	2 балла
4.	Обоснованно получен верный ответ для $\upsilon_{ ext{AC}}$	2 балла
5.	Обоснованно получен верный ответ для $\upsilon_{\scriptscriptstyle \mathrm{B}}$	2 балла
Зад	дача 2. Отрыв цилиндра	
1.	Отмечено, что $\vec{N} + \vec{T_1} + \vec{T_2} = 0$	1 балл
2.	Показано, что, отрыв цилиндра от ленты происходит в момент,	
	когда вся лента принимает горизонтальное положение	1 балл
3.	Найдено смещение конца ленты к моменту отрыва цилиндра	2 балла
4.	Найдена работа A силы F к моменту отрыва цилиндра от ленты	2 балла
5.	Отмечено, что работа A пошла на приращение механической	
	энергии цилиндра	1 балл
6.	Записан закон сохранения механической энергии	2 балла
7.	Получено выражение для скорости цилиндра	1 балл
3a ₂	ача 3. Дифференциальный термометр	
1.	Уравнения состояния для новых температур сосудов	2 балла
2.	Связь между смещением поршня и разностью температур	3 балла
3.	Вывод о линейности шкалы	1 балл
4.	Определение цены деления шкалы термометра	2 балла
5.	Рисунок с оцифрованной шкалой	2 балл
Zar	цача 4. И так можно измерять	
1.	Условие равновесия заряда на конце нити (условие (1))	2 балла
2.	Установлены тригонометрические соотношения (2)	2 балла 1 балл
3.	Получено выражение (3)	1 балл 1 балл
<i>3</i> . 4.	Получено выражение (4)	1 балл
4 . 5.	Получено выражение (4)	2 балла
<i>5</i> .	Записано условие устойчивости равновесия	2 балла 1 балл
7.	Получен ответ (7)	2 балла
٠.	TIONY ION OTDOX (1)	2 Gajijia

LII Всероссийская олимпиада школьников по физике. Региональный этап. 17 января 2018 г.

Задача 5. Составной конденсатор

Случай (1)

1.	Записан закон сохранения энергии	2 балла
2.	Получено выражение для максимума силы тока	2 балл
3.	Найдена максимальная сила тока	1 балл
Сл	учай (2)	
4.	Записан закон сохранения энергии	2 балла
5.	Получено выражение для максимума силы тока	2 балл
6.	Найдена максимальная сила тока	1 балл